some refactor and prior effect script
This commit is contained in:
parent
de7c04a380
commit
ca981836b4
|
|
@ -32,10 +32,13 @@ multiclass = {
|
||||||
'fetch_fn': fetch_UCI_multiclass,
|
'fetch_fn': fetch_UCI_multiclass,
|
||||||
'sample_size': 1000
|
'sample_size': 1000
|
||||||
}
|
}
|
||||||
multiclass['datasets'].remove('poker_hand') # random performance
|
try:
|
||||||
multiclass['datasets'].remove('hcv') # random performance
|
multiclass['datasets'].remove('poker_hand') # random performance
|
||||||
multiclass['datasets'].remove('letter') # many classes
|
multiclass['datasets'].remove('hcv') # random performance
|
||||||
multiclass['datasets'].remove('isolet') # many classes
|
multiclass['datasets'].remove('letter') # many classes
|
||||||
|
multiclass['datasets'].remove('isolet') # many classes
|
||||||
|
except ValueError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
# utils
|
# utils
|
||||||
|
|
|
||||||
|
|
@ -405,7 +405,7 @@ if __name__ == '__main__':
|
||||||
|
|
||||||
K = 3
|
K = 3
|
||||||
# alpha = [p] + [(1. - p) / (K - 1)] * (K - 1)
|
# alpha = [p] + [(1. - p) / (K - 1)] * (K - 1)
|
||||||
alpha = [0.095, 0.246, 0.658]
|
alpha = [0.095, 0.246, 0.658] # connect-4
|
||||||
alpha = np.array(alpha)
|
alpha = np.array(alpha)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -12,6 +12,7 @@ from quapy.method.aggregative import ACC, AggregativeQuantifier
|
||||||
from sklearn.linear_model import LogisticRegression as LR
|
from sklearn.linear_model import LogisticRegression as LR
|
||||||
from copy import deepcopy as cp
|
from copy import deepcopy as cp
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
from full_experiments import model_selection
|
||||||
|
|
||||||
|
|
||||||
def select_imbalanced_datasets(top_m=5):
|
def select_imbalanced_datasets(top_m=5):
|
||||||
|
|
@ -22,7 +23,6 @@ def select_imbalanced_datasets(top_m=5):
|
||||||
balance = normalized_entropy(data_prev)
|
balance = normalized_entropy(data_prev)
|
||||||
datasets_prevs.append((data_name, balance))
|
datasets_prevs.append((data_name, balance))
|
||||||
datasets_prevs.sort(key=lambda x: x[1])
|
datasets_prevs.sort(key=lambda x: x[1])
|
||||||
print(datasets_prevs)
|
|
||||||
data_selected = [data_name for data_name, balance in datasets_prevs[:top_m]]
|
data_selected = [data_name for data_name, balance in datasets_prevs[:top_m]]
|
||||||
return data_selected
|
return data_selected
|
||||||
|
|
||||||
|
|
@ -110,6 +110,7 @@ def experiment(dataset: Dataset, point_quantifier: AggregativeQuantifier, grid:
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
result_dir = Path('./results/prior_effect')
|
result_dir = Path('./results/prior_effect')
|
||||||
selected = select_imbalanced_datasets()
|
selected = select_imbalanced_datasets()
|
||||||
|
print(f'selected datasets={selected}')
|
||||||
qp.environ['SAMPLE_SIZE'] = multiclass['sample_size']
|
qp.environ['SAMPLE_SIZE'] = multiclass['sample_size']
|
||||||
for data_name in selected:
|
for data_name in selected:
|
||||||
data = multiclass['fetch_fn'](data_name)
|
data = multiclass['fetch_fn'](data_name)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue