diff --git a/BayesianKDEy/commons.py b/BayesianKDEy/commons.py index c1abfc1..a9ed1ba 100644 --- a/BayesianKDEy/commons.py +++ b/BayesianKDEy/commons.py @@ -32,10 +32,13 @@ multiclass = { 'fetch_fn': fetch_UCI_multiclass, 'sample_size': 1000 } -multiclass['datasets'].remove('poker_hand') # random performance -multiclass['datasets'].remove('hcv') # random performance -multiclass['datasets'].remove('letter') # many classes -multiclass['datasets'].remove('isolet') # many classes +try: + multiclass['datasets'].remove('poker_hand') # random performance + multiclass['datasets'].remove('hcv') # random performance + multiclass['datasets'].remove('letter') # many classes + multiclass['datasets'].remove('isolet') # many classes +except ValueError: + pass # utils diff --git a/BayesianKDEy/plot_simplex.py b/BayesianKDEy/plot_simplex.py index 91d8b9b..b948533 100644 --- a/BayesianKDEy/plot_simplex.py +++ b/BayesianKDEy/plot_simplex.py @@ -405,7 +405,7 @@ if __name__ == '__main__': K = 3 # alpha = [p] + [(1. - p) / (K - 1)] * (K - 1) - alpha = [0.095, 0.246, 0.658] + alpha = [0.095, 0.246, 0.658] # connect-4 alpha = np.array(alpha) diff --git a/BayesianKDEy/prior_effect.py b/BayesianKDEy/prior_effect.py index c95dbf1..07769a4 100644 --- a/BayesianKDEy/prior_effect.py +++ b/BayesianKDEy/prior_effect.py @@ -12,6 +12,7 @@ from quapy.method.aggregative import ACC, AggregativeQuantifier from sklearn.linear_model import LogisticRegression as LR from copy import deepcopy as cp from tqdm import tqdm +from full_experiments import model_selection def select_imbalanced_datasets(top_m=5): @@ -22,7 +23,6 @@ def select_imbalanced_datasets(top_m=5): balance = normalized_entropy(data_prev) datasets_prevs.append((data_name, balance)) datasets_prevs.sort(key=lambda x: x[1]) - print(datasets_prevs) data_selected = [data_name for data_name, balance in datasets_prevs[:top_m]] return data_selected @@ -110,6 +110,7 @@ def experiment(dataset: Dataset, point_quantifier: AggregativeQuantifier, grid: if __name__ == '__main__': result_dir = Path('./results/prior_effect') selected = select_imbalanced_datasets() + print(f'selected datasets={selected}') qp.environ['SAMPLE_SIZE'] = multiclass['sample_size'] for data_name in selected: data = multiclass['fetch_fn'](data_name)