QuaPy/BayesianKDEy/commons.py

83 lines
2.2 KiB
Python

import os
from pathlib import Path
from sklearn.base import BaseEstimator
import quapy as qp
import numpy as np
from method.aggregative import KDEyML
from quapy.functional import l1_norm, ILRtransformation
from scipy.stats import entropy
def fetch_UCI_multiclass(data_name):
return qp.datasets.fetch_UCIMulticlassDataset(data_name, min_class_support=0.01)
def fetch_UCI_binary(data_name):
return qp.datasets.fetch_UCIBinaryDataset(data_name)
# global configurations
binary = {
'datasets': qp.datasets.UCI_BINARY_DATASETS,
'fetch_fn': fetch_UCI_binary,
'sample_size': 500
}
multiclass = {
'datasets': qp.datasets.UCI_MULTICLASS_DATASETS,
'fetch_fn': fetch_UCI_multiclass,
'sample_size': 1000
}
try:
multiclass['datasets'].remove('poker_hand') # random performance
multiclass['datasets'].remove('hcv') # random performance
multiclass['datasets'].remove('letter') # many classes
multiclass['datasets'].remove('isolet') # many classes
except ValueError:
pass
# utils
def experiment_path(dir:Path, dataset_name:str, method_name:str):
os.makedirs(dir, exist_ok=True)
return dir/f'{dataset_name}__{method_name}.pkl'
def normalized_entropy(p):
"""
Normalized Shannon entropy in [0, 1]
p: array-like, prevalence vector (sums to 1)
"""
p = np.asarray(p)
H = entropy(p) # Shannon entropy
H_max = np.log(len(p))
return np.clip(H / H_max, 0, 1)
def antagonistic_prevalence(p, strength=1):
ilr = ILRtransformation()
z = ilr(p)
z_ant = - strength * z
p_ant = ilr.inverse(z_ant)
return p_ant
class KDEyCLR(KDEyML):
def __init__(self, classifier: BaseEstimator=None, fit_classifier=True, val_split=5, bandwidth=1., random_state=None):
super().__init__(
classifier=classifier, fit_classifier=fit_classifier, val_split=val_split, bandwidth=bandwidth,
random_state=random_state, kernel='aitchison'
)
class KDEyILR(KDEyML):
def __init__(self, classifier: BaseEstimator=None, fit_classifier=True, val_split=5, bandwidth=1., random_state=None):
super().__init__(
classifier=classifier, fit_classifier=fit_classifier, val_split=val_split, bandwidth=bandwidth,
random_state=random_state, kernel='ilr'
)