UI improvements and docker files

This commit is contained in:
Nicola Leonardi 2025-11-30 19:04:10 +01:00
parent 02d11a4c6e
commit fdbc314ef4
22 changed files with 451 additions and 241 deletions

16
.env
View File

@ -1,10 +1,10 @@
mllm_end_point_openai='https://hiis-accessibility-fonderia.cognitiveservices.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2025-01-01-preview'
mllm_api_key_openai=
mllm_model_id_openai='gpt-4o'
MLLM_END_POINT_OPENAI=https://hiis-accessibility-fonderia.cognitiveservices.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2025-01-01-preview
MLLM_API_KEY_OPENAI=
MLLM_MODEL_ID_OPENAI=gpt-4o
mllm_end_point_local='https://vgpu.hiis.cloud.isti.cnr.it/api/chat'
mllm_api_key_local=
#mllm_model_id_local='gemma3:12b'
mllm_model_id_local='gemma3:4b'
MLLM_END_POINT_LOCAL=https://vgpu.hiis.cloud.isti.cnr.it/api/chat
MLLM_API_KEY_LOCAL=
#MLLM_MODEL_ID_LOCAL=gemma3:12b
MLLM_MODEL_ID_LOCAL=gemma3:4b
use_openai_model='False'
USE_OPENAI_MODEL=True

View File

@ -26,6 +26,15 @@ python wcag_validator.py
python wcag_validator_RESTserver.py
## For UI use:
python ui_alt_text.py
python wcag_validator_ui.py
## Docker
### Rest server
docker build -t wcag_resr_server .
docker run --env-file .env -p 8000:8000 --name wcag_rest_server -d wcag_rest_server
### UI
docker build -t wcag_ui .
docker run --env-file UI/.env -p 8001:8001 --name wcag_ui -d wcag_ui
## The scripts folder contains some elaboration scripts. They require a dedicated requirements file

4
UI/.env Normal file
View File

@ -0,0 +1,4 @@
DB_PATH=persistence/wcag_validator_ui.db
WCAG_REST_SERVER_URL=http://localhost:8000
URL_LIST_old=["http://www.amazon.it","https://web.archive.org/web/20230630235957/http://www.amazon.com/", "https://web.archive.org/web/20251130033532/https://www.ebay.com/"]
URL_LIST=["https://amazon.com","https://ebay.com","https://walmart.com","https://etsy.com","https://target.com","https://wayfair.com","https://bestbuy.com","https://macys.com","https://homedepot.com","https://costco.com","https://www.ansa.it","https://en.wikipedia.org/wiki/Main_Page","https://www.lanazione.it","https://www.ansa.it","https://www.bbc.com","https://www.cnn.com","https://www.nytimes.com","https://www.theguardian.com"]

Binary file not shown.

117
UI/dependences_ui/utils.py Normal file
View File

@ -0,0 +1,117 @@
import hashlib
import json
import os
import gradio as gr
# File to store user credentials
USERS_FILE = "users.json"
def load_users():
"""Load users from JSON file"""
if os.path.exists(USERS_FILE):
with open(USERS_FILE, "r") as f:
return json.load(f)
return {}
def save_users(users):
"""Save users to JSON file"""
with open(USERS_FILE, "w") as f:
json.dump(users, f)
def hash_password(password):
"""Hash password using SHA-256"""
return hashlib.sha256(password.encode()).hexdigest()
def register_user(username, password, confirm_password):
"""Register a new user"""
if not username or not password:
return "", "Username and password cannot be empty!", None
if password != confirm_password:
return "", "Passwords do not match!", None
if len(password) < 6:
return "", "Password must be at least 6 characters long!", None
users = load_users()
if username in users:
return "", "Username already exists!", None
users[username] = hash_password(password)
save_users(users)
return "", f"✅ Registration successful! You can now login.", None
def login_user(username, password, state):
"""Validate user login"""
if not username or not password:
return (
"Please enter both username and password!",
"",
state,
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(open=True),
)
users = load_users()
if username not in users:
return (
"Invalid username or password!",
"",
state,
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(open=True),
)
if users[username] != hash_password(password):
return (
"Invalid username or password!",
"",
state,
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(open=True),
)
# Login successful
state = {"logged_in": True, "username": username}
return (
f"✅ Welcome back, {username}!",
"",
state,
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(open=False),
)
def logout_user(state):
"""Logout current user"""
state = {"logged_in": False, "username": None}
return (
"Logged out successfully!",
state,
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
def protected_content(state):
"""Content only accessible to logged-in users"""
if state.get("logged_in"):
return f"You are logged as {state.get('username')}\n"
return "Please login to access this content."

4
UI/requirements_UI.txt Normal file
View File

@ -0,0 +1,4 @@
gradio==5.49.1
pandas==2.3.3
python-dotenv==1.2.1
requests==2.32.5

View File

@ -1 +0,0 @@
gradio==5.49.1

View File

@ -1,11 +1,24 @@
#### To launch the script
# gradio ui_alt_text.py
# python ui_alt_text.py
# gradio wcag_validator_ui.py
# python wcag_validator_ui.py
import gradio as gr
import requests
from pathlib import Path
import sys
import pandas as pd
# from ..dependences.utils import call_API_urlibrequest
parent_dir = Path(__file__).parent.parent
sys.path.insert(0, str(parent_dir))
from dotenv import load_dotenv, find_dotenv
from dependences.utils import (
call_API_urlibrequest,
create_folder,
db_persistence_startup,
db_persistence_insert,
return_from_env_valid,
)
from dependences_ui.utils import *
import logging
import time
import json
@ -17,196 +30,6 @@ import sqlite3
WCAG_VALIDATOR_RESTSERVER_HEADERS = [("Content-Type", "application/json")]
url_list = [
"https://amazon.com",
"https://web.archive.org/web/20251126051721/https://www.amazon.com/",
"https://web.archive.org/web/20230630235957/http://www.amazon.com/",
"https://ebay.com",
"https://walmart.com",
"https://etsy.com",
"https://target.com",
"https://wayfair.com",
"https://bestbuy.com",
"https://macys.com",
"https://homedepot.com",
"https://costco.com",
"https://www.ansa.it",
"https://en.wikipedia.org/wiki/Main_Page",
"https://www.lanazione.it",
"https://www.ansa.it",
"https://www.bbc.com",
"https://www.cnn.com",
"https://www.nytimes.com",
"https://www.theguardian.com",
]
# ------ TODO use from utils instead of redefining here
def call_API_urlibrequest(
data={},
verbose=False,
url="",
headers=[],
method="post",
base=2, # number of seconds to wait
max_tries=3,
):
if verbose:
logging.info("input_data:%s", data)
# Allow multiple attempts to call the API incase of downtime.
# Return provided response to user after 3 failed attempts.
wait_seconds = [base**i for i in range(max_tries)]
for num_tries in range(max_tries):
try:
if method == "get":
# Encode the parameters and append them to the URL
query_string = urllib.parse.urlencode(data)
url_with_params = f"{url}?{query_string}"
request = urllib.request.Request(url_with_params, method="GET")
for ele in headers:
request.add_header(ele[0], ele[1])
elif method == "post":
# Convert the dictionary to a JSON formatted string and encode it to bytes
data_to_send = json.dumps(data).encode("utf-8")
request = urllib.request.Request(url, data=data_to_send, method="POST")
for ele in headers:
request.add_header(ele[0], ele[1])
else:
return {"error_message": "method_not_allowed"}
# Send the request and capture the response
with urllib.request.urlopen(request) as response:
# Read and decode the response
response_json = json.loads(response.read().decode("utf-8"))
logging.info("response_json:%s", response_json)
logging.info("response.status_code:%s", response.getcode())
return response_json
except Exception as e:
logging.error("error message:%s", e)
response_json = {"error": e}
logging.info("num_tries:%s", num_tries)
logging.info(
"Waiting %s seconds before automatically trying again.",
str(wait_seconds[num_tries]),
)
time.sleep(wait_seconds[num_tries])
logging.info(
"Tried %s times to make API call to get a valid response object", max_tries
)
logging.info("Returning provided response")
return response_json
def create_folder(root_path, directory_separator, next_path):
output_dir = root_path + directory_separator + next_path
try:
if not os.path.exists(output_dir):
os.mkdir(output_dir)
except Exception as e:
logging.error(exception_msg, e)
exit(1)
return output_dir
def db_persistence_startup(
db_name_and_path="persistence/wcag_validator.db",
table="wcag_validator_results",
):
try:
_ = create_folder(
root_path=os.getcwd(),
directory_separator="/",
next_path="persistence",
)
except Exception as e:
logging.error("exception on db persistence startup:%s", e)
exit(1)
try:
db_connection = sqlite3.connect(db_name_and_path)
cursor = db_connection.cursor()
# Create a table to store JSON data
cursor.execute(
"""CREATE TABLE IF NOT EXISTS """
+ table
+ """ (
id INTEGER PRIMARY KEY AUTOINCREMENT,
insertion_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
insert_type TEXT,
json_input_data TEXT, json_output_data TEXT
)"""
)
db_connection.commit()
logging.info("connection to the database established")
return db_connection
except Exception as e:
logging.error("db_management problem:%s", e)
exit(1)
def db_persistence_insert(
connection_db,
insert_type,
json_in_str,
json_out_str,
table="wcag_validator_results",
):
try:
cursor = connection_db.cursor()
# Insert JSON data into the table along with the current timestamp
cursor.execute(
"INSERT INTO "
+ table
+ " (insert_type,json_input_data,json_output_data) VALUES (?,?,?)",
(insert_type, json_in_str, json_out_str),
)
connection_db.commit()
logging.info(
"Data correctly saved on local db table:%s, insertion type:%s",
table,
insert_type,
)
except Exception as e:
logging.error("exception" + " %s", e)
# ------- End TODO use from utils instead of redefining here
# Method 1: Embed external website (works only for sites that allow iframes)
def create_iframe(url):
iframe_html = (
f'<iframe src="{url}" width="100%" height="600px" frameborder="0"></iframe>'
)
return iframe_html
def load_images_from_json(json_input):
@ -361,7 +184,7 @@ def load_images_from_json(json_input):
</div>
</div>
"""
info_text += f"✓ Image {idx+1} alt_text: {alt_text}\n"
# info_text += f"✓ Image {idx+1} alt_text: {alt_text}\n"
html += "</div>"
return info_text, html
@ -380,13 +203,14 @@ def load_llm_assessment_from_json(json_input):
if "mllm_validations" not in data or not data["mllm_validations"]:
print("no mllm_validations found")
return "No mllm_validations found in JSON", []
return pd.DataFrame()
info_text = f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)\n\n"
print(
f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)"
)
data_frame = []
for idx, img_data in enumerate(
data["mllm_validations"]["mllm_alttext_assessments"], 1
):
@ -399,9 +223,17 @@ def load_llm_assessment_from_json(json_input):
)
alt_text_original = img_data.get("alt_text", "No alt_text provided")
info_text += f"✓ alt_text original: {alt_text_original}. LLM assessment: {original_alt_text_assessment} => LLM proposed alt_text: {new_alt_text}\n"
data_frame.append(
{
"Original Alt Text": alt_text_original,
"LLM Assessment": original_alt_text_assessment,
"Proposed Alt Text": new_alt_text,
}
)
return info_text
df = pd.DataFrame(data_frame)
return df
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", []
@ -410,19 +242,51 @@ def load_llm_assessment_from_json(json_input):
def make_alttext_llm_assessment_api_call(
url, selected_images_json=[], number_of_images=30
url,
selected_images_json=[],
db_path=None,
wcga_rest_server_url="http://localhost:8000",
user_state={},
number_of_images=30,
):
print(f"Making API call to {url}")
print(
f"Making API call for llm assessment for {url} to {wcga_rest_server_url}/wcag_alttext_validation"
)
selected_images = json.loads(selected_images_json) if selected_images_json else []
print("selected_images:", selected_images)
# print("selected_images:", selected_images)
if not selected_images or len(selected_images) == 0:
info_text = "No images selected"
return info_text
print(info_text)
return pd.DataFrame()
# prepare data for insertion
json_in_str = {}
json_out_str = {}
selected_urls = []
selected_alt_text_original = []
user_assessments = []
user_new_alt_texts = []
selected_image_id = []
for img in selected_images:
selected_urls.append(img["image_url"])
selected_alt_text_original.append(img["original_alt_text"])
user_assessments.append(img["assessment"])
user_new_alt_texts.append(img["new_alt_text"])
selected_image_id.append(
int(img["image_index"]) + 1
) # add the id selected (+1 for index alignment)
json_in_str["images_urls"] = selected_urls
json_in_str["images_alt_text_original"] = selected_alt_text_original
json_out_str["user_assessments"] = user_assessments
json_out_str["user_new_alt_texts"] = user_new_alt_texts
json_in_str = json.dumps(json_in_str, ensure_ascii=False)
json_out_str = json.dumps(json_out_str, ensure_ascii=False)
json_user_str = json.dumps({"username": user_state["username"]}, ensure_ascii=False)
connection_db = sqlite3.connect(db_path)
# ---------
try:
response = call_API_urlibrequest(
@ -435,19 +299,46 @@ def make_alttext_llm_assessment_api_call(
"save_elaboration": "True",
"specific_images_urls": selected_urls,
},
url="http://localhost:8000/wcag_alttext_validation",
url=wcga_rest_server_url + "/wcag_alttext_validation",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_text = load_llm_assessment_from_json(response)
info_dataframe = load_llm_assessment_from_json(response)
info_dataframe.insert(
0, 'Image #', selected_image_id
) # add the UI ids from to api response
return info_text
except Exception as e:
return {"error": str(e)}
try:
# insert after everything to keep datetime aligned
db_persistence_insert(
connection_db=connection_db,
insert_type="wcag_user_alttext_assessments",
page_url=url,
user=json_user_str,
llm_model="",
json_in_str=json_in_str,
json_out_str=json_out_str,
table="wcag_user_assessments",
)
except Exception as e:
print("Error inserting user assessment into database:", str(e))
finally:
if connection_db:
connection_db.close()
return info_dataframe
def make_image_extraction_api_call(url, number_of_images=30):
print(f"Making API call to {url}")
def make_image_extraction_api_call(
url,
number_of_images=30,
wcga_rest_server_url="http://localhost:8000",
):
print(
f"Making API call for image_extraction for {url} to {wcga_rest_server_url}/extract_images"
)
try:
response = call_API_urlibrequest(
@ -455,7 +346,7 @@ def make_image_extraction_api_call(url, number_of_images=30):
"page_url": url,
"number_of_images": number_of_images,
},
url="http://localhost:8000/extract_images",
url=wcga_rest_server_url + "/extract_images",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
@ -468,18 +359,83 @@ def make_image_extraction_api_call(url, number_of_images=30):
# ------- Gradio Interface -------#
# Global variable to hold database connection
connection_db = db_persistence_startup(table="wcag_user_assessments")
# Create Gradio interface
with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
with gr.Blocks(theme=gr.themes.Glass(), title="WCAG AI Validator") as demo:
# Use the global connection_db reference
print("Database connection reference available globally")
env_path = find_dotenv(filename=".env")
if env_path == "":
print("env path not found: service starting with the default params values")
_ = load_dotenv(env_path) # read .env file
db_path = return_from_env_valid("DB_PATH", "persistence/wcag_validator_ui.db")
print("db_path:", db_path)
wcga_rest_server_url = return_from_env_valid(
"WCGA_REST_SERVER_URL", "http://localhost:8000"
)
default_urls = [
"https://amazon.com",
"https://ebay.com",
]
url_list_str=return_from_env_valid("URL_LIST",json.dumps(default_urls))
url_list = json.loads(url_list_str)
print("wcga_rest_server_url:", wcga_rest_server_url)
connection_db = db_persistence_startup(
db_name_and_path=db_path, table="wcag_user_assessments"
)
print("Database connection reference available:", connection_db)
connection_db.close()
gr.Markdown("# WCAG AI Validator UI")
with gr.Tab("Alt Text Assessment"):
# login section
user_state = gr.State({"logged_in": False, "username": None})
with gr.Accordion(label="Register & Login", open=True) as register_and_login:
with gr.Column(visible=True) as login_section:
gr.Markdown("## Login / Register")
with gr.Tab("Login"):
login_username = gr.Textbox(
label="Username", placeholder="Enter your username"
)
login_password = gr.Textbox(
label="Password", type="password", placeholder="Enter your password"
)
login_btn = gr.Button("Login", variant="primary")
login_msg = gr.Textbox(label="Login Status", interactive=False)
with gr.Tab("Register"):
reg_username = gr.Textbox(
label="Username", placeholder="Choose a username"
)
reg_password = gr.Textbox(
label="Password",
type="password",
placeholder="Choose a password (min 6 characters)",
)
reg_confirm = gr.Textbox(
label="Confirm Password",
type="password",
placeholder="Confirm your password",
)
reg_btn = gr.Button("Register", variant="primary")
reg_msg = gr.Textbox(label="Registration Status", interactive=False)
with gr.Column(visible=False) as protected_section:
content_display = gr.Textbox(
label="Your account", lines=5, interactive=False
)
logout_btn = gr.Button("Logout", variant="stop")
# end login section
with gr.Tab("Alt Text Assessment", visible=False) as alttext_assessment:
db_path_state = gr.State(value=db_path) # Store path in State
wcga_rest_server_url_state = gr.State(value=wcga_rest_server_url)
with gr.Row():
with gr.Column():
@ -492,10 +448,17 @@ with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
label="Select an URL",
info="Select an URL to load in iframe",
)
images_number = gr.Slider(
5,
100,
value=30,
step=5,
label="Max number of images to retrieve",
)
with gr.Column():
image_extraction_api_call_btn = gr.Button(
"Extract Images & Alt Text", variant="primary"
"Extract Images & Alt Texts", variant="primary"
)
alttext_api_call_btn = gr.Button(
"Alt Text LLM Assessment",
@ -505,15 +468,27 @@ with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
with gr.Row():
image_info_output = gr.Textbox(label="Original alt-text", lines=5)
alttext_info_output = gr.Textbox(label="LLM Assessment", lines=5)
image_info_output = gr.Textbox(label="Managed Images", lines=5)
# Use DataFrame for tabular output
alttext_info_output = gr.DataFrame(
headers=[
"Image #",
"Original Alt Text",
"LLM Assessment",
"Proposed Alt Text",
],
label="LLM Assessment Results",
wrap=True, # Wrap text in cells
interactive=False,
)
with gr.Row():
gallery_html = gr.HTML(label="Image Gallery")
image_extraction_api_call_btn.click(
fn=lambda: ("", "", "", gr.Button(interactive=False)),
fn=lambda: ("", "", pd.DataFrame(), gr.Button(interactive=False)),
inputs=[],
outputs=[
image_info_output,
@ -523,7 +498,7 @@ with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
],
).then(
make_image_extraction_api_call,
inputs=[url_input],
inputs=[url_input, images_number, wcga_rest_server_url_state],
outputs=[image_info_output, gallery_html],
).then(
fn=lambda: gr.Button(interactive=True),
@ -535,7 +510,13 @@ with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
alttext_api_call_btn.click(
fn=make_alttext_llm_assessment_api_call,
inputs=[url_input, gallery_html],
inputs=[
url_input,
gallery_html,
db_path_state,
wcga_rest_server_url_state,
user_state,
],
outputs=[alttext_info_output],
js="""
(url_input,gallery_html) => {
@ -558,6 +539,7 @@ with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
const newAltText = document.querySelector('.new-alt-text[data-index="' + index + '"]').value;
selectedData.push({
image_index: index,
image_url: imageUrl,
original_alt_text: originalAlt,
assessment: parseInt(assessment),
@ -570,7 +552,40 @@ with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
""",
)
# placed here at the end to give full contents visibility to events
# Event handlers
login_btn.click(
fn=login_user,
inputs=[login_username, login_password, user_state],
outputs=[
login_msg,
reg_msg,
user_state,
login_section,
protected_section,
alttext_assessment,
register_and_login,
],
).then(fn=protected_content, inputs=[user_state], outputs=[content_display])
reg_btn.click(
fn=register_user,
inputs=[reg_username, reg_password, reg_confirm],
outputs=[login_msg, reg_msg, user_state],
)
logout_btn.click(
fn=logout_user,
inputs=[user_state],
outputs=[
login_msg,
user_state,
login_section,
protected_section,
alttext_assessment,
],
)
if __name__ == "__main__":
# connection_db = db_persistence_startup(table="wcag_user_assessments")
demo.launch()
demo.launch(server_name="0.0.0.0", server_port=7860)

View File

@ -347,7 +347,7 @@ class ImageExtractor:
#await page.goto(self.url, wait_until="networkidle") # method 1: use if the page has unpredictable async content and there is the need to ensure everything loads
# The "networkidle" approach is generally more robust but slower, while the fixed timeout is faster but less adaptive to actual page behavior.
# ---alternative method2: use if there is total awareness of the page's loading pattern and want faster, more reliable execution
await page.goto(self.url, wait_until="load")
await page.goto(self.url, timeout=50000, wait_until="load")# deafult timeout=30000, 30sec
# Wait for page to load completely
await page.wait_for_timeout(2000) # Wait for dynamic content
# -----
@ -380,7 +380,7 @@ class ImageExtractor:
try:
img_element = await page.locator(
f'img[src="{url}"]'
).first.element_handle() # Use first() to get only the first match
).first.element_handle(timeout=0) # Use first() to get only the first match; 0 timeout=No timeout
if img_element:
img_elements.append(img_element)
except Exception as e:

View File

@ -160,6 +160,9 @@ def db_persistence_startup(
id INTEGER PRIMARY KEY AUTOINCREMENT,
insertion_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
insert_type TEXT,
page_url TEXT,
user TEXT,
llm_model TEXT,
json_input_data TEXT, json_output_data TEXT
)"""
)
@ -177,8 +180,11 @@ def db_persistence_startup(
def db_persistence_insert(
connection_db,
insert_type,
json_in_str,
json_out_str,
page_url,
user="",
llm_model="",
json_in_str="",
json_out_str="",
table="wcag_validator_results",
):
@ -189,8 +195,8 @@ def db_persistence_insert(
cursor.execute(
"INSERT INTO "
+ table
+ " (insert_type,json_input_data,json_output_data) VALUES (?,?,?)",
(insert_type, json_in_str, json_out_str),
+ " (insert_type,page_url,user,llm_model,json_input_data,json_output_data) VALUES (?,?,?,?,?,?)",
(insert_type, page_url, user, llm_model, json_in_str, json_out_str),
)
connection_db.commit()
logging.info(

21
docker/UI/Dockerfile Normal file
View File

@ -0,0 +1,21 @@
FROM python:3.10-slim
COPY /docker/UI/requirements_UI.txt /tmp/requirements_UI.txt
RUN pip install --no-cache-dir -r /tmp/requirements_UI.txt
RUN rm /tmp/requirements_UI.txt
COPY dependences /dependences
COPY /UI/persistence /UI/persistence
COPY /UI/dependences_ui /UI/dependences_ui
COPY /UI/wcag_validator_ui.py /UI/wcag_validator_ui.py
EXPOSE 7860
WORKDIR /UI
CMD ["python","wcag_validator_ui.py"]

View File

@ -0,0 +1,4 @@
gradio==5.49.1
pandas==2.3.3
python-dotenv==1.2.1
requests==2.32.5

View File

@ -0,0 +1,23 @@
FROM python:3.10-slim
COPY /docker/restServer/requirements.txt /tmp/requirements.txt
RUN pip install --no-cache-dir -r /tmp/requirements.txt
# Install Playwright browsers and dependencies
RUN playwright install --with-deps
RUN rm /tmp/requirements.txt
COPY persistence /persistence
COPY dependences /dependences
COPY restserver /restserver
COPY wcag_validator_RESTserver.py wcag_validator_RESTserver.py
EXPOSE 8000
CMD ["python","wcag_validator_RESTserver.py"]

View File

@ -0,0 +1,6 @@
pandas==2.3.3
playwright==1.56.0
python-dotenv==1.2.1
requests==2.32.5
uvicorn==0.38.0
fastapi==0.121.2

View File

@ -2,4 +2,5 @@ pandas==2.3.3
playwright==1.56.0
python-dotenv==1.2.1
requests==2.32.5
uvicorn==0.38.0
uvicorn==0.38.0
fastapi==0.121.2

View File

@ -24,7 +24,7 @@ class WCAGAltTextValuation(BaseModel):
context_levels: int = 5
pixel_distance_threshold: int = 200
number_of_images: int = 10
save_images: str = "True"
save_images: str = "True"
save_elaboration: str = "True"
specific_images_urls: List[str] = []
@ -110,13 +110,12 @@ class WCAGAltTextValuationRoutes:
images,
openai_model=self.mllm_settings["openai_model"],
)
# Parse MLLM responses
# Parse MLLM responses
for i, response in enumerate(mllm_responses):
parsed_resp = parse_mllm_alt_text_response(response["mllm_response"])
mllm_responses[i]["mllm_response"] = parsed_resp
mllm_responses_object = {
"mllm_model_id": mllm_model_id,
"mllm_alttext_assessments": mllm_responses,
}
@ -133,6 +132,8 @@ class WCAGAltTextValuationRoutes:
db_persistence_insert(
connection_db=self.connection_db,
insert_type="wcag_alttext_validation",
page_url=json_content["page_url"],
llm_model=mllm_model_id,
json_in_str=json_in_str,
json_out_str=json_out_str,
table="wcag_validator_results",