UI release

This commit is contained in:
Nicola Leonardi 2025-11-26 17:33:52 +01:00
parent e53ac19298
commit 02d11a4c6e
9 changed files with 802 additions and 63 deletions

View File

@ -25,4 +25,7 @@ python wcag_validator.py
## For the RESTservice use:
python wcag_validator_RESTserver.py
## For UI use:
python ui_alt_text.py
## The scripts folder contains some elaboration scripts. They require a dedicated requirements file

View File

@ -0,0 +1 @@
gradio==5.49.1

576
UI/ui_alt_text.py Normal file
View File

@ -0,0 +1,576 @@
#### To launch the script
# gradio ui_alt_text.py
# python ui_alt_text.py
import gradio as gr
import requests
# from ..dependences.utils import call_API_urlibrequest
import logging
import time
import json
import urllib.request
import urllib.parse
import os
import sqlite3
WCAG_VALIDATOR_RESTSERVER_HEADERS = [("Content-Type", "application/json")]
url_list = [
"https://amazon.com",
"https://web.archive.org/web/20251126051721/https://www.amazon.com/",
"https://web.archive.org/web/20230630235957/http://www.amazon.com/",
"https://ebay.com",
"https://walmart.com",
"https://etsy.com",
"https://target.com",
"https://wayfair.com",
"https://bestbuy.com",
"https://macys.com",
"https://homedepot.com",
"https://costco.com",
"https://www.ansa.it",
"https://en.wikipedia.org/wiki/Main_Page",
"https://www.lanazione.it",
"https://www.ansa.it",
"https://www.bbc.com",
"https://www.cnn.com",
"https://www.nytimes.com",
"https://www.theguardian.com",
]
# ------ TODO use from utils instead of redefining here
def call_API_urlibrequest(
data={},
verbose=False,
url="",
headers=[],
method="post",
base=2, # number of seconds to wait
max_tries=3,
):
if verbose:
logging.info("input_data:%s", data)
# Allow multiple attempts to call the API incase of downtime.
# Return provided response to user after 3 failed attempts.
wait_seconds = [base**i for i in range(max_tries)]
for num_tries in range(max_tries):
try:
if method == "get":
# Encode the parameters and append them to the URL
query_string = urllib.parse.urlencode(data)
url_with_params = f"{url}?{query_string}"
request = urllib.request.Request(url_with_params, method="GET")
for ele in headers:
request.add_header(ele[0], ele[1])
elif method == "post":
# Convert the dictionary to a JSON formatted string and encode it to bytes
data_to_send = json.dumps(data).encode("utf-8")
request = urllib.request.Request(url, data=data_to_send, method="POST")
for ele in headers:
request.add_header(ele[0], ele[1])
else:
return {"error_message": "method_not_allowed"}
# Send the request and capture the response
with urllib.request.urlopen(request) as response:
# Read and decode the response
response_json = json.loads(response.read().decode("utf-8"))
logging.info("response_json:%s", response_json)
logging.info("response.status_code:%s", response.getcode())
return response_json
except Exception as e:
logging.error("error message:%s", e)
response_json = {"error": e}
logging.info("num_tries:%s", num_tries)
logging.info(
"Waiting %s seconds before automatically trying again.",
str(wait_seconds[num_tries]),
)
time.sleep(wait_seconds[num_tries])
logging.info(
"Tried %s times to make API call to get a valid response object", max_tries
)
logging.info("Returning provided response")
return response_json
def create_folder(root_path, directory_separator, next_path):
output_dir = root_path + directory_separator + next_path
try:
if not os.path.exists(output_dir):
os.mkdir(output_dir)
except Exception as e:
logging.error(exception_msg, e)
exit(1)
return output_dir
def db_persistence_startup(
db_name_and_path="persistence/wcag_validator.db",
table="wcag_validator_results",
):
try:
_ = create_folder(
root_path=os.getcwd(),
directory_separator="/",
next_path="persistence",
)
except Exception as e:
logging.error("exception on db persistence startup:%s", e)
exit(1)
try:
db_connection = sqlite3.connect(db_name_and_path)
cursor = db_connection.cursor()
# Create a table to store JSON data
cursor.execute(
"""CREATE TABLE IF NOT EXISTS """
+ table
+ """ (
id INTEGER PRIMARY KEY AUTOINCREMENT,
insertion_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
insert_type TEXT,
json_input_data TEXT, json_output_data TEXT
)"""
)
db_connection.commit()
logging.info("connection to the database established")
return db_connection
except Exception as e:
logging.error("db_management problem:%s", e)
exit(1)
def db_persistence_insert(
connection_db,
insert_type,
json_in_str,
json_out_str,
table="wcag_validator_results",
):
try:
cursor = connection_db.cursor()
# Insert JSON data into the table along with the current timestamp
cursor.execute(
"INSERT INTO "
+ table
+ " (insert_type,json_input_data,json_output_data) VALUES (?,?,?)",
(insert_type, json_in_str, json_out_str),
)
connection_db.commit()
logging.info(
"Data correctly saved on local db table:%s, insertion type:%s",
table,
insert_type,
)
except Exception as e:
logging.error("exception" + " %s", e)
# ------- End TODO use from utils instead of redefining here
# Method 1: Embed external website (works only for sites that allow iframes)
def create_iframe(url):
iframe_html = (
f'<iframe src="{url}" width="100%" height="600px" frameborder="0"></iframe>'
)
return iframe_html
def load_images_from_json(json_input):
"""Extract URLs and alt text from JSON and create HTML gallery"""
try:
data = json_input
if "images" not in data or not data["images"]:
return "No images found in JSON", ""
images = data["images"]
info_text = f"Found {len(images)} image(s)\n"
print(f"Found {len(data['images'])} image(s)")
# Create HTML gallery with checkboxes and assessment forms
html = """
<style>
.image-gallery {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
gap: 20px;
padding: 20px;
}
.image-card {
border: 2px solid #e0e0e0;
border-radius: 8px;
padding: 10px;
background: white;
}
.image-card:has(input:checked) {
border-color: #2196F3;
background: #a7c1c1;
}
.image-card img {
width: 100%;
height: 200px;
object-fit: cover;
border-radius: 4px;
}
.image-info {
margin-top: 10px;
}
.checkbox-label {
display: flex;
align-items: center;
gap: 8px;
cursor: pointer;
font-weight: 500;
}
.image-checkbox {
width: 18px;
height: 18px;
cursor: pointer;
accent-color: #2196F3;
}
.alt-text {
font-size: 14px;
color: #666;
margin-top: 5px;
}
.assessment-panel {
display: none;
margin-top: 15px;
padding: 10px;
background: #f0f7ff;
border-radius: 4px;
border: 1px solid #2196F3;
}
.assessment-panel.visible {
display: block;
}
.form-group {
margin: 10px 0;
}
.form-group label {
display: block;
font-weight: 500;
margin-bottom: 5px;
font-size: 13px;
}
.range-container {
display: flex;
align-items: center;
gap: 10px;
}
.range-container input[type="range"] {
flex: 1;
}
.range-value {
font-weight: bold;
min-width: 20px;
text-align: center;
}
textarea {
width: 100%;
padding: 8px;
border: 1px solid #ccc;
border-radius: 4px;
font-size: 13px;
font-family: inherit;
resize: vertical;
}
</style>
<div class="image-gallery">
"""
for idx, img_data in enumerate(images):
url = img_data.get("url", "")
alt_text = img_data.get("alt_text", "No description")
html += f"""
<div class="image-card">
<img src="{url}" alt="{alt_text}" loading="lazy" onerror="this.src='data:image/svg+xml,%3Csvg xmlns=%22http://www.w3.org/2000/svg%22 width=%22200%22 height=%22200%22%3E%3Crect fill=%22%23ddd%22 width=%22200%22 height=%22200%22/%3E%3Ctext x=%2250%25%22 y=%2250%25%22 text-anchor=%22middle%22 dy=%22.3em%22 fill=%22%23999%22%3EImage not found%3C/text%3E%3C/svg%3E'">
<div class="image-info">
<label class="checkbox-label">
<input type="checkbox" class="image-checkbox" data-imgurl="{url}" data-index="{idx}"
onchange="
const panel = document.getElementById('panel-{idx}');
const checkedCount = document.querySelectorAll('.image-checkbox:checked').length;
if (this.checked) {{
if (checkedCount > 3) {{
this.checked = false;
alert('Maximum 3 images can be selected!');
return;
}}
panel.classList.add('visible');
}} else {{
panel.classList.remove('visible');
}}
">
Select #{idx + 1}
</label>
<div class="alt-text">Current alt_text: {alt_text}</div>
<div id="panel-{idx}" class="assessment-panel">
<div class="form-group">
<label>Rate current alt-text:</label>
<div class="range-container">
<input type="range" min="1" max="5" value="3"
class="assessment-range" data-index="{idx}"
oninput="document.getElementById('range-value-{idx}').textContent = this.value">
<span id="range-value-{idx}" class="range-value">3</span>
</div>
</div>
<div class="form-group">
<label>New alt-text:</label>
<textarea class="new-alt-text" data-index="{idx}" rows="3" placeholder="Enter improved alt-text...">{alt_text}</textarea>
</div>
</div>
<input type="hidden" class="original-alt" data-index="{idx}" value="{alt_text}" />
</div>
</div>
"""
info_text += f"✓ Image {idx+1} alt_text: {alt_text}\n"
html += "</div>"
return info_text, html
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", ""
except Exception as e:
return f"Error: {str(e)}", ""
def load_llm_assessment_from_json(json_input):
try:
# Parse JSON input
data = json_input
if "mllm_validations" not in data or not data["mllm_validations"]:
print("no mllm_validations found")
return "No mllm_validations found in JSON", []
info_text = f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)\n\n"
print(
f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)"
)
for idx, img_data in enumerate(
data["mllm_validations"]["mllm_alttext_assessments"], 1
):
original_alt_text_assessment = img_data["mllm_response"].get(
"original_alt_text_assessment", "No description"
)
new_alt_text = img_data["mllm_response"].get(
"new_alt_text", "No description"
)
alt_text_original = img_data.get("alt_text", "No alt_text provided")
info_text += f"✓ alt_text original: {alt_text_original}. LLM assessment: {original_alt_text_assessment} => LLM proposed alt_text: {new_alt_text}\n"
return info_text
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", []
except Exception as e:
return f"Error: {str(e)}", []
def make_alttext_llm_assessment_api_call(
url, selected_images_json=[], number_of_images=30
):
print(f"Making API call to {url}")
selected_images = json.loads(selected_images_json) if selected_images_json else []
print("selected_images:", selected_images)
if not selected_images or len(selected_images) == 0:
info_text = "No images selected"
return info_text
selected_urls = []
for img in selected_images:
selected_urls.append(img["image_url"])
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
"context_levels": 5,
"pixel_distance_threshold": 200,
"save_images": "True",
"save_elaboration": "True",
"specific_images_urls": selected_urls,
},
url="http://localhost:8000/wcag_alttext_validation",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_text = load_llm_assessment_from_json(response)
return info_text
except Exception as e:
return {"error": str(e)}
def make_image_extraction_api_call(url, number_of_images=30):
print(f"Making API call to {url}")
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
},
url="http://localhost:8000/extract_images",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_text, gallery_images = load_images_from_json(response)
return info_text, gallery_images
except Exception as e:
return {"error": str(e)}
# ------- Gradio Interface -------#
# Global variable to hold database connection
connection_db = db_persistence_startup(table="wcag_user_assessments")
# Create Gradio interface
with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
# Use the global connection_db reference
print("Database connection reference available globally")
gr.Markdown("# WCAG AI Validator UI")
with gr.Tab("Alt Text Assessment"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
url_input = gr.Dropdown(
url_list,
value=url_list[0],
multiselect=False,
label="Select an URL",
info="Select an URL to load in iframe",
)
with gr.Column():
image_extraction_api_call_btn = gr.Button(
"Extract Images & Alt Text", variant="primary"
)
alttext_api_call_btn = gr.Button(
"Alt Text LLM Assessment",
variant="secondary",
interactive=False,
)
with gr.Row():
image_info_output = gr.Textbox(label="Original alt-text", lines=5)
alttext_info_output = gr.Textbox(label="LLM Assessment", lines=5)
with gr.Row():
gallery_html = gr.HTML(label="Image Gallery")
image_extraction_api_call_btn.click(
fn=lambda: ("", "", "", gr.Button(interactive=False)),
inputs=[],
outputs=[
image_info_output,
gallery_html,
alttext_info_output,
alttext_api_call_btn,
],
).then(
make_image_extraction_api_call,
inputs=[url_input],
outputs=[image_info_output, gallery_html],
).then(
fn=lambda: gr.Button(interactive=True),
inputs=[],
outputs=[alttext_api_call_btn],
)
# Process selected images with JavaScript
alttext_api_call_btn.click(
fn=make_alttext_llm_assessment_api_call,
inputs=[url_input, gallery_html],
outputs=[alttext_info_output],
js="""
(url_input,gallery_html) => {
const checkboxes = document.querySelectorAll('.image-checkbox:checked');
if (checkboxes.length === 0) {
alert('Please select at least one image!');
return [url_input,JSON.stringify([])];
}
if (checkboxes.length > 3) {
alert('Please select maximum 3 images!');
return [url_input,JSON.stringify([])];
}
const selectedData = [];
checkboxes.forEach(checkbox => {
const index = checkbox.dataset.index;
const imageUrl = checkbox.dataset.imgurl;
const originalAlt = document.querySelector('.original-alt[data-index="' + index + '"]').value;
const assessment = document.querySelector('.assessment-range[data-index="' + index + '"]').value;
const newAltText = document.querySelector('.new-alt-text[data-index="' + index + '"]').value;
selectedData.push({
image_url: imageUrl,
original_alt_text: originalAlt,
assessment: parseInt(assessment),
new_alt_text: newAltText
});
});
return [url_input,JSON.stringify(selectedData)];
}
""",
)
if __name__ == "__main__":
# connection_db = db_persistence_startup(table="wcag_user_assessments")
demo.launch()

View File

@ -8,6 +8,8 @@ import argparse
from dependences.utils import disclaim_bool_string, prepare_output_folder, create_folder
import requests
import os
import urllib.parse
from pathlib import Path
class ImageExtractor:
@ -53,29 +55,51 @@ class ImageExtractor:
# Also check query parameters (e.g., format=jpeg)
return any(fmt in img_url.lower() for fmt in self.SUPPORTED_FORMATS)
async def _download_image(self, image_url, output_dir="images") -> None:
# Parse the URL to get the path without query parameters
parsed_url = urllib.parse.urlparse(image_url)
url_path = parsed_url.path
# Get the filename from the path
filename = url_path.split("/")[-1]
# Split filename and extension
if "." in filename:
image_name, ext = filename.rsplit(".", 1)
ext = ext.lower()
else:
image_name = filename
ext = "jpg"
# Validate extension
if ext not in ["jpg", "jpeg", "png", "gif", "webp"]:
ext = "jpg"
# Sanitize image name (remove special characters, limit length)
image_name = "".join(c for c in image_name if c.isalnum() or c in ("-", "_"))
image_name = image_name[:200] # Limit filename length
# If name is empty after sanitization, create a hash-based name
if not image_name:
import hashlib
image_name = hashlib.md5(image_url.encode()).hexdigest()[:16]
# Download the image
print("getting image:", image_url)
response = requests.get(image_url, timeout=10)
response.raise_for_status()
try:
# Get file extension from URL
ext = image_url.split(".")[-1].split("?")[0]
image_name = image_url.split("/")[-1][0 : -len(ext) - 1]
if ext not in ["jpg", "jpeg", "png", "gif", "webp"]:
ext = "jpg"
# Download the image
print("getting image:", image_url)
response = requests.get(image_url, timeout=10)
response.raise_for_status()
# Save the image
output_path = os.path.join(output_dir, f"{image_name}.{ext}")
with open(output_path, "wb") as f:
f.write(response.content)
print(f"Saved: {output_path}")
except Exception as e:
print(f"Error downloading {image_url}: {e}")
print(f"Error saving image {image_url}: {e}")
async def save_elaboration(self, images, output_dir) -> None:
with open(output_dir, "w", encoding="utf-8") as f:
@ -306,7 +330,9 @@ class ImageExtractor:
return metadata
async def extract_images(self, specific_images_urls=[]) -> List[Dict]:
async def extract_images(
self, extract_context=True, specific_images_urls=[]
) -> List[Dict]:
"""
Extract all images from the page with their metadata and context.
@ -318,40 +344,59 @@ class ImageExtractor:
page = await browser.new_page()
try:
# await page.goto(self.url, wait_until='networkidle')#original
# ---alternative
#await page.goto(self.url, wait_until="networkidle") # method 1: use if the page has unpredictable async content and there is the need to ensure everything loads
# The "networkidle" approach is generally more robust but slower, while the fixed timeout is faster but less adaptive to actual page behavior.
# ---alternative method2: use if there is total awareness of the page's loading pattern and want faster, more reliable execution
await page.goto(self.url, wait_until="load")
# Wait for page to load completely
await page.wait_for_timeout(2000) # Wait for dynamic content
# -----
# Get page metadata once
page_metadata = await self._get_page_metadata(page)
if extract_context:
# Get page metadata once
page_metadata = await self._get_page_metadata(page)
page_title = page_metadata["title"]
page_description = page_metadata["description"]
page_keywords = page_metadata["keywords"]
page_headings = page_metadata["headings"]
else:
page_title = ""
page_description = ""
page_keywords = ""
page_headings = []
if len(specific_images_urls) == 0:
# Find all img elements
print("Extracting all images from the page")
print("Extracting all images from the page",self.url)
img_elements = await page.locator("img").all()
else:
print("Extracting specific images from the page:", specific_images_urls)
print(
"Extracting specific images from the page:",
self.url,
specific_images_urls,
)
img_elements = []
for url in specific_images_urls:
try:
img_element = await page.locator(
f'img[src="{url}"]'
).first.element_handle() # Use first() to get only the first match
).first.element_handle() # Use first() to get only the first match
if img_element:
img_elements.append(img_element)
except Exception as e:
print(f"Error locating image with src {url}: {str(e)}")
print(f"Error locating image with src {url}: {str(e)}")
image_source_list = [] # avoid multiple check for the same image url
images_data = []
for img in img_elements:
if len(images_data) >= self.number_of_images: # limits the effective image list based on the ini param.
print("Reached the maximum number of images to extract.",self.number_of_images)
for img in img_elements:
if (
len(images_data) >= self.number_of_images
): # limits the effective image list based on the ini param.
print(
"Reached the maximum number of images to extract.",
self.number_of_images,
)
break
try:
# Get image src
@ -373,7 +418,9 @@ class ImageExtractor:
# Verify format
if not self._is_supported_format(img_url):
print(
"image format not supported for url:", img_url, ". Skipped."
"image format not supported for url:",
img_url,
". Skipped.",
)
continue
@ -386,10 +433,13 @@ class ImageExtractor:
# Get alt text
alt_text = await img.get_attribute("alt") or ""
# Get surrounding HTML context (full, immediate, and nearby)
html_context, immediate_context, nearby_text = (
await self._get_element_context(page, img)
)
if extract_context:
# Get surrounding HTML context (full, immediate, and nearby)
html_context, immediate_context, nearby_text = (
await self._get_element_context(page, img)
)
else:
html_context, immediate_context, nearby_text = "", "", ""
# Compile image data
image_info = {
@ -399,10 +449,10 @@ class ImageExtractor:
"immediate_context": immediate_context,
"nearby_text": nearby_text,
"page_url": self.url,
"page_title": page_metadata["title"],
"page_description": page_metadata["description"],
"page_keywords": page_metadata["keywords"],
"page_headings": page_metadata["headings"],
"page_title": page_title,
"page_description": page_description,
"page_keywords": page_keywords,
"page_headings": page_headings,
}
images_data.append(image_info)

View File

@ -20,11 +20,15 @@ class MLLMManager:
response = call_API_urlibrequest(
url=self.end_point, headers=headers, data=payload
)
try:
if openai_model:
model_response = response["choices"][0]["message"]["content"]
else:
model_response = response["message"]["content"]
if openai_model:
model_response = response["choices"][0]["message"]["content"]
else:
model_response = response["message"]["content"]
except Exception as e:
print("Error getting model response:", e)
model_response = {}
return model_response

View File

@ -0,0 +1,83 @@
from fastapi import APIRouter, Request
from fastapi.responses import JSONResponse
import logging
from pydantic import BaseModel
import json
from typing import Dict, List
from datetime import datetime, timezone
from dependences.utils import (
disclaim_bool_string,
prepare_output_folder,
create_folder,
db_persistence_insert,
)
from dependences.image_extractor import ImageExtractor
from dependences.mllm_management import MLLMManager, parse_mllm_alt_text_response
invalid_json_input_msg = "Invalid JSON format"
unexpected_error_msg = "Unexpected Error: could not end the process"
class ExtractImages(BaseModel):
page_url: str = "https://www.bbc.com"
number_of_images: int = 10
class ExtractImagesRoutes:
def __init__(self):
self.router = APIRouter()
self.router.add_api_route(
"/extract_images",
self.extract_images,
methods=["POST"],
tags=["Basic Elaboration"],
description="extract images from a webpage",
name="Extract images and context",
dependencies=[],
)
logging.info("extract images routes correctly initialized.")
async def extract_images(
self, request: Request, data: ExtractImages
) -> JSONResponse:
"""Return the alt text validation assessment based on WCAG guidelines"""
try:
json_content = json.loads(data.model_dump_json())
# ---------------------
# Create extractor
image_extractor = ImageExtractor(
json_content["page_url"],
context_levels=0,
pixel_distance_threshold=0,
number_of_images=json_content["number_of_images"],
save_images="False",
save_images_path="",
)
# Extract images
logging.info(f"Extracting images from: {json_content['page_url']}")
images = await image_extractor.extract_images(extract_context=False)
returned_object = {
"images": images,
}
return JSONResponse(content=returned_object, status_code=200)
except json.JSONDecodeError:
logging.error(invalid_json_input_msg)
return JSONResponse(
content={"error": invalid_json_input_msg}, status_code=400
)
except Exception as e:
logging.error(unexpected_error_msg + " %s", e)
return JSONResponse(
content={"error": unexpected_error_msg}, status_code=500
)

View File

@ -24,8 +24,8 @@ class WCAGAltTextValuation(BaseModel):
context_levels: int = 5
pixel_distance_threshold: int = 200
number_of_images: int = 10
save_images: bool = True
save_elaboration: bool = True
save_images: str = "True"
save_elaboration: str = "True"
specific_images_urls: List[str] = []
@ -37,18 +37,18 @@ class WCAGAltTextValuationRoutes:
self.router = APIRouter()
self.router.add_api_route(
"/wgag_alttext_validation",
self.wgag_alttext_validation,
"/wcag_alttext_validation",
self.wcag_alttext_validation,
methods=["POST"],
tags=["Wcag Alt Text Validation"],
description="WCAG validator alt_text validation",
name="wgag alttext validation",
name="wcag alttext validation",
dependencies=[],
)
logging.info("wcag alttext routes correctly initialized.")
async def wgag_alttext_validation(
async def wcag_alttext_validation(
self, request: Request, data: WCAGAltTextValuation
) -> JSONResponse:
"""Return the alt text validation assessment based on WCAG guidelines"""

View File

@ -111,7 +111,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\nicola\\AppData\\Local\\Temp\\ipykernel_14420\\1344219625.py:6: DeprecationWarning: __array__ implementation doesn't accept a copy keyword, so passing copy=False failed. __array__ must implement 'dtype' and 'copy' keyword arguments. To learn more, see the migration guide https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword\n",
"C:\\Users\\nicola\\AppData\\Local\\Temp\\ipykernel_20916\\1344219625.py:6: DeprecationWarning: __array__ implementation doesn't accept a copy keyword, so passing copy=False failed. __array__ must implement 'dtype' and 'copy' keyword arguments. To learn more, see the migration guide https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword\n",
" return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))\n"
]
}
@ -931,7 +931,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"id": "3992a33f",
"metadata": {},
"outputs": [
@ -942,7 +942,7 @@
" \"Damaged homes and wasteland in Pokrovsk, Ukraine with smoke rising, highlighting war's impact on the city.\")"
]
},
"execution_count": 11,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@ -963,7 +963,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 13,
"id": "c1dad7b8",
"metadata": {},
"outputs": [
@ -984,7 +984,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\nicola\\AppData\\Local\\Temp\\ipykernel_14420\\1344219625.py:6: DeprecationWarning: __array__ implementation doesn't accept a copy keyword, so passing copy=False failed. __array__ must implement 'dtype' and 'copy' keyword arguments. To learn more, see the migration guide https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword\n",
"C:\\Users\\nicola\\AppData\\Local\\Temp\\ipykernel_20916\\1344219625.py:6: DeprecationWarning: __array__ implementation doesn't accept a copy keyword, so passing copy=False failed. __array__ must implement 'dtype' and 'copy' keyword arguments. To learn more, see the migration guide https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword\n",
" return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))\n"
]
},
@ -994,7 +994,7 @@
"np.float64(0.5812176442146302)"
]
},
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@ -1014,7 +1014,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 14,
"id": "1c2d1cff",
"metadata": {},
"outputs": [
@ -1025,7 +1025,7 @@
" [0.70703788, 1. ]])"
]
},
"execution_count": 13,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@ -1094,7 +1094,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 15,
"id": "b6ff8518",
"metadata": {},
"outputs": [
@ -1104,7 +1104,7 @@
"(2, 768)"
]
},
"execution_count": 16,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@ -1119,7 +1119,26 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 32,
"id": "6310f4b2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None\n"
]
}
],
"source": [
"# per capire se usa default prompt_name per differenziare i task come modelli avanzati come gemma\n",
"print(model.default_prompt_name )"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "2eb31bbb",
"metadata": {},
"outputs": [
@ -1130,7 +1149,7 @@
" [0.82111526, 1. ]], dtype=float32)"
]
},
"execution_count": 17,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@ -1142,7 +1161,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 17,
"id": "93a846e4",
"metadata": {},
"outputs": [
@ -1152,7 +1171,7 @@
"np.float32(0.8211156)"
]
},
"execution_count": 18,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@ -1164,7 +1183,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 18,
"id": "a7cf3288",
"metadata": {},
"outputs": [
@ -1176,7 +1195,7 @@
" 'cosine')"
]
},
"execution_count": 19,
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}

View File

@ -18,6 +18,7 @@ from restserver.routers import (
routes_health,
routes_local_db,
routes_wcag_alttext,
routes_extract_images,
)
from dependences.utils import (
@ -44,10 +45,12 @@ def server(connection_db, mllm_settings):
wcag_alttext_routes = routes_wcag_alttext.WCAGAltTextValuationRoutes(
connection_db, mllm_settings
)
extract_images_routes = routes_extract_images.ExtractImagesRoutes()
app.include_router(health_routes.router, prefix="")
app.include_router(local_db_routes.router, prefix="")
app.include_router(wcag_alttext_routes.router, prefix="")
app.include_router(extract_images_routes.router, prefix="")
return app