wcag_AI_validation/UI/ui_alt_text.py

577 lines
19 KiB
Python

#### To launch the script
# gradio ui_alt_text.py
# python ui_alt_text.py
import gradio as gr
import requests
# from ..dependences.utils import call_API_urlibrequest
import logging
import time
import json
import urllib.request
import urllib.parse
import os
import sqlite3
WCAG_VALIDATOR_RESTSERVER_HEADERS = [("Content-Type", "application/json")]
url_list = [
"https://amazon.com",
"https://web.archive.org/web/20251126051721/https://www.amazon.com/",
"https://web.archive.org/web/20230630235957/http://www.amazon.com/",
"https://ebay.com",
"https://walmart.com",
"https://etsy.com",
"https://target.com",
"https://wayfair.com",
"https://bestbuy.com",
"https://macys.com",
"https://homedepot.com",
"https://costco.com",
"https://www.ansa.it",
"https://en.wikipedia.org/wiki/Main_Page",
"https://www.lanazione.it",
"https://www.ansa.it",
"https://www.bbc.com",
"https://www.cnn.com",
"https://www.nytimes.com",
"https://www.theguardian.com",
]
# ------ TODO use from utils instead of redefining here
def call_API_urlibrequest(
data={},
verbose=False,
url="",
headers=[],
method="post",
base=2, # number of seconds to wait
max_tries=3,
):
if verbose:
logging.info("input_data:%s", data)
# Allow multiple attempts to call the API incase of downtime.
# Return provided response to user after 3 failed attempts.
wait_seconds = [base**i for i in range(max_tries)]
for num_tries in range(max_tries):
try:
if method == "get":
# Encode the parameters and append them to the URL
query_string = urllib.parse.urlencode(data)
url_with_params = f"{url}?{query_string}"
request = urllib.request.Request(url_with_params, method="GET")
for ele in headers:
request.add_header(ele[0], ele[1])
elif method == "post":
# Convert the dictionary to a JSON formatted string and encode it to bytes
data_to_send = json.dumps(data).encode("utf-8")
request = urllib.request.Request(url, data=data_to_send, method="POST")
for ele in headers:
request.add_header(ele[0], ele[1])
else:
return {"error_message": "method_not_allowed"}
# Send the request and capture the response
with urllib.request.urlopen(request) as response:
# Read and decode the response
response_json = json.loads(response.read().decode("utf-8"))
logging.info("response_json:%s", response_json)
logging.info("response.status_code:%s", response.getcode())
return response_json
except Exception as e:
logging.error("error message:%s", e)
response_json = {"error": e}
logging.info("num_tries:%s", num_tries)
logging.info(
"Waiting %s seconds before automatically trying again.",
str(wait_seconds[num_tries]),
)
time.sleep(wait_seconds[num_tries])
logging.info(
"Tried %s times to make API call to get a valid response object", max_tries
)
logging.info("Returning provided response")
return response_json
def create_folder(root_path, directory_separator, next_path):
output_dir = root_path + directory_separator + next_path
try:
if not os.path.exists(output_dir):
os.mkdir(output_dir)
except Exception as e:
logging.error(exception_msg, e)
exit(1)
return output_dir
def db_persistence_startup(
db_name_and_path="persistence/wcag_validator.db",
table="wcag_validator_results",
):
try:
_ = create_folder(
root_path=os.getcwd(),
directory_separator="/",
next_path="persistence",
)
except Exception as e:
logging.error("exception on db persistence startup:%s", e)
exit(1)
try:
db_connection = sqlite3.connect(db_name_and_path)
cursor = db_connection.cursor()
# Create a table to store JSON data
cursor.execute(
"""CREATE TABLE IF NOT EXISTS """
+ table
+ """ (
id INTEGER PRIMARY KEY AUTOINCREMENT,
insertion_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
insert_type TEXT,
json_input_data TEXT, json_output_data TEXT
)"""
)
db_connection.commit()
logging.info("connection to the database established")
return db_connection
except Exception as e:
logging.error("db_management problem:%s", e)
exit(1)
def db_persistence_insert(
connection_db,
insert_type,
json_in_str,
json_out_str,
table="wcag_validator_results",
):
try:
cursor = connection_db.cursor()
# Insert JSON data into the table along with the current timestamp
cursor.execute(
"INSERT INTO "
+ table
+ " (insert_type,json_input_data,json_output_data) VALUES (?,?,?)",
(insert_type, json_in_str, json_out_str),
)
connection_db.commit()
logging.info(
"Data correctly saved on local db table:%s, insertion type:%s",
table,
insert_type,
)
except Exception as e:
logging.error("exception" + " %s", e)
# ------- End TODO use from utils instead of redefining here
# Method 1: Embed external website (works only for sites that allow iframes)
def create_iframe(url):
iframe_html = (
f'<iframe src="{url}" width="100%" height="600px" frameborder="0"></iframe>'
)
return iframe_html
def load_images_from_json(json_input):
"""Extract URLs and alt text from JSON and create HTML gallery"""
try:
data = json_input
if "images" not in data or not data["images"]:
return "No images found in JSON", ""
images = data["images"]
info_text = f"Found {len(images)} image(s)\n"
print(f"Found {len(data['images'])} image(s)")
# Create HTML gallery with checkboxes and assessment forms
html = """
<style>
.image-gallery {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
gap: 20px;
padding: 20px;
}
.image-card {
border: 2px solid #e0e0e0;
border-radius: 8px;
padding: 10px;
background: white;
}
.image-card:has(input:checked) {
border-color: #2196F3;
background: #a7c1c1;
}
.image-card img {
width: 100%;
height: 200px;
object-fit: cover;
border-radius: 4px;
}
.image-info {
margin-top: 10px;
}
.checkbox-label {
display: flex;
align-items: center;
gap: 8px;
cursor: pointer;
font-weight: 500;
}
.image-checkbox {
width: 18px;
height: 18px;
cursor: pointer;
accent-color: #2196F3;
}
.alt-text {
font-size: 14px;
color: #666;
margin-top: 5px;
}
.assessment-panel {
display: none;
margin-top: 15px;
padding: 10px;
background: #f0f7ff;
border-radius: 4px;
border: 1px solid #2196F3;
}
.assessment-panel.visible {
display: block;
}
.form-group {
margin: 10px 0;
}
.form-group label {
display: block;
font-weight: 500;
margin-bottom: 5px;
font-size: 13px;
}
.range-container {
display: flex;
align-items: center;
gap: 10px;
}
.range-container input[type="range"] {
flex: 1;
}
.range-value {
font-weight: bold;
min-width: 20px;
text-align: center;
}
textarea {
width: 100%;
padding: 8px;
border: 1px solid #ccc;
border-radius: 4px;
font-size: 13px;
font-family: inherit;
resize: vertical;
}
</style>
<div class="image-gallery">
"""
for idx, img_data in enumerate(images):
url = img_data.get("url", "")
alt_text = img_data.get("alt_text", "No description")
html += f"""
<div class="image-card">
<img src="{url}" alt="{alt_text}" loading="lazy" onerror="this.src='data:image/svg+xml,%3Csvg xmlns=%22http://www.w3.org/2000/svg%22 width=%22200%22 height=%22200%22%3E%3Crect fill=%22%23ddd%22 width=%22200%22 height=%22200%22/%3E%3Ctext x=%2250%25%22 y=%2250%25%22 text-anchor=%22middle%22 dy=%22.3em%22 fill=%22%23999%22%3EImage not found%3C/text%3E%3C/svg%3E'">
<div class="image-info">
<label class="checkbox-label">
<input type="checkbox" class="image-checkbox" data-imgurl="{url}" data-index="{idx}"
onchange="
const panel = document.getElementById('panel-{idx}');
const checkedCount = document.querySelectorAll('.image-checkbox:checked').length;
if (this.checked) {{
if (checkedCount > 3) {{
this.checked = false;
alert('Maximum 3 images can be selected!');
return;
}}
panel.classList.add('visible');
}} else {{
panel.classList.remove('visible');
}}
">
Select #{idx + 1}
</label>
<div class="alt-text">Current alt_text: {alt_text}</div>
<div id="panel-{idx}" class="assessment-panel">
<div class="form-group">
<label>Rate current alt-text:</label>
<div class="range-container">
<input type="range" min="1" max="5" value="3"
class="assessment-range" data-index="{idx}"
oninput="document.getElementById('range-value-{idx}').textContent = this.value">
<span id="range-value-{idx}" class="range-value">3</span>
</div>
</div>
<div class="form-group">
<label>New alt-text:</label>
<textarea class="new-alt-text" data-index="{idx}" rows="3" placeholder="Enter improved alt-text...">{alt_text}</textarea>
</div>
</div>
<input type="hidden" class="original-alt" data-index="{idx}" value="{alt_text}" />
</div>
</div>
"""
info_text += f"✓ Image {idx+1} alt_text: {alt_text}\n"
html += "</div>"
return info_text, html
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", ""
except Exception as e:
return f"Error: {str(e)}", ""
def load_llm_assessment_from_json(json_input):
try:
# Parse JSON input
data = json_input
if "mllm_validations" not in data or not data["mllm_validations"]:
print("no mllm_validations found")
return "No mllm_validations found in JSON", []
info_text = f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)\n\n"
print(
f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)"
)
for idx, img_data in enumerate(
data["mllm_validations"]["mllm_alttext_assessments"], 1
):
original_alt_text_assessment = img_data["mllm_response"].get(
"original_alt_text_assessment", "No description"
)
new_alt_text = img_data["mllm_response"].get(
"new_alt_text", "No description"
)
alt_text_original = img_data.get("alt_text", "No alt_text provided")
info_text += f"✓ alt_text original: {alt_text_original}. LLM assessment: {original_alt_text_assessment} => LLM proposed alt_text: {new_alt_text}\n"
return info_text
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", []
except Exception as e:
return f"Error: {str(e)}", []
def make_alttext_llm_assessment_api_call(
url, selected_images_json=[], number_of_images=30
):
print(f"Making API call to {url}")
selected_images = json.loads(selected_images_json) if selected_images_json else []
print("selected_images:", selected_images)
if not selected_images or len(selected_images) == 0:
info_text = "No images selected"
return info_text
selected_urls = []
for img in selected_images:
selected_urls.append(img["image_url"])
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
"context_levels": 5,
"pixel_distance_threshold": 200,
"save_images": "True",
"save_elaboration": "True",
"specific_images_urls": selected_urls,
},
url="http://localhost:8000/wcag_alttext_validation",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_text = load_llm_assessment_from_json(response)
return info_text
except Exception as e:
return {"error": str(e)}
def make_image_extraction_api_call(url, number_of_images=30):
print(f"Making API call to {url}")
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
},
url="http://localhost:8000/extract_images",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_text, gallery_images = load_images_from_json(response)
return info_text, gallery_images
except Exception as e:
return {"error": str(e)}
# ------- Gradio Interface -------#
# Global variable to hold database connection
connection_db = db_persistence_startup(table="wcag_user_assessments")
# Create Gradio interface
with gr.Blocks(theme="Insuz/SimpleIndigo", title="WCAG AI Validator") as demo:
# Use the global connection_db reference
print("Database connection reference available globally")
gr.Markdown("# WCAG AI Validator UI")
with gr.Tab("Alt Text Assessment"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
url_input = gr.Dropdown(
url_list,
value=url_list[0],
multiselect=False,
label="Select an URL",
info="Select an URL to load in iframe",
)
with gr.Column():
image_extraction_api_call_btn = gr.Button(
"Extract Images & Alt Text", variant="primary"
)
alttext_api_call_btn = gr.Button(
"Alt Text LLM Assessment",
variant="secondary",
interactive=False,
)
with gr.Row():
image_info_output = gr.Textbox(label="Original alt-text", lines=5)
alttext_info_output = gr.Textbox(label="LLM Assessment", lines=5)
with gr.Row():
gallery_html = gr.HTML(label="Image Gallery")
image_extraction_api_call_btn.click(
fn=lambda: ("", "", "", gr.Button(interactive=False)),
inputs=[],
outputs=[
image_info_output,
gallery_html,
alttext_info_output,
alttext_api_call_btn,
],
).then(
make_image_extraction_api_call,
inputs=[url_input],
outputs=[image_info_output, gallery_html],
).then(
fn=lambda: gr.Button(interactive=True),
inputs=[],
outputs=[alttext_api_call_btn],
)
# Process selected images with JavaScript
alttext_api_call_btn.click(
fn=make_alttext_llm_assessment_api_call,
inputs=[url_input, gallery_html],
outputs=[alttext_info_output],
js="""
(url_input,gallery_html) => {
const checkboxes = document.querySelectorAll('.image-checkbox:checked');
if (checkboxes.length === 0) {
alert('Please select at least one image!');
return [url_input,JSON.stringify([])];
}
if (checkboxes.length > 3) {
alert('Please select maximum 3 images!');
return [url_input,JSON.stringify([])];
}
const selectedData = [];
checkboxes.forEach(checkbox => {
const index = checkbox.dataset.index;
const imageUrl = checkbox.dataset.imgurl;
const originalAlt = document.querySelector('.original-alt[data-index="' + index + '"]').value;
const assessment = document.querySelector('.assessment-range[data-index="' + index + '"]').value;
const newAltText = document.querySelector('.new-alt-text[data-index="' + index + '"]').value;
selectedData.push({
image_url: imageUrl,
original_alt_text: originalAlt,
assessment: parseInt(assessment),
new_alt_text: newAltText
});
});
return [url_input,JSON.stringify(selectedData)];
}
""",
)
if __name__ == "__main__":
# connection_db = db_persistence_startup(table="wcag_user_assessments")
demo.launch()