cnn enabled
This commit is contained in:
parent
9b2110f9cf
commit
8c70e61bbb
49
src/main.py
49
src/main.py
|
@ -1,10 +1,12 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from index import Index
|
from index import Index
|
||||||
from model import RNNProjection, AuthorshipAttributionClassifier, Batch, SameAuthorClassifier, FullAuthorClassifier
|
from model.model import RNNProjection, AuthorshipAttributionClassifier, SameAuthorClassifier, FullAuthorClassifier
|
||||||
from data.fetch_victorian import Victorian
|
from data.fetch_victorian import Victorian
|
||||||
from evaluation import eval
|
from evaluation import eval
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from model.cnn import CNNProjection
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device('cuda')
|
device = torch.device('cuda')
|
||||||
else:
|
else:
|
||||||
|
@ -41,41 +43,44 @@ x1, y1 = Xte[shuffle1], yte[shuffle1]
|
||||||
x2, y2 = Xte[shuffle2], yte[shuffle2]
|
x2, y2 = Xte[shuffle2], yte[shuffle2]
|
||||||
paired_y = y1==y2
|
paired_y = y1==y2
|
||||||
|
|
||||||
hidden_size=64
|
hidden_size=128
|
||||||
output_size=128
|
channels_out=128
|
||||||
|
output_size=1024
|
||||||
|
kernel_sizes=[3,5,7,11,13]
|
||||||
pad_length=1000
|
pad_length=1000
|
||||||
batch_size=50
|
batch_size=64
|
||||||
n_epochs=10
|
n_epochs=256
|
||||||
|
"""
|
||||||
hidden_size=16
|
hidden_size=16
|
||||||
output_size=32
|
output_size=32
|
||||||
pad_length=100
|
pad_length=100
|
||||||
batch_size=10
|
batch_size=10
|
||||||
n_epochs=2
|
n_epochs=2
|
||||||
|
"""
|
||||||
|
|
||||||
# attribution
|
# attribution
|
||||||
print('Attribution')
|
print('Attribution')
|
||||||
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
|
#phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
|
||||||
|
phi = CNNProjection(vocabulary_size=index.vocabulary_size(), embedding_dim=hidden_size, out_size=output_size, channels_out=channels_out, kernel_sizes=kernel_sizes, dropout=0.5).to(device)
|
||||||
cls = AuthorshipAttributionClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
|
cls = AuthorshipAttributionClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
|
||||||
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
|
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
|
||||||
yte_ = cls.predict(Xte)
|
yte_ = cls.predict(Xte)
|
||||||
eval(yte, yte_)
|
eval(yte, yte_)
|
||||||
|
|
||||||
# verification
|
# verification
|
||||||
print('Verification')
|
#print('Verification')
|
||||||
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
|
#phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
|
||||||
cls = SameAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
|
#cls = SameAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
|
||||||
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
|
#cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
|
||||||
paired_y_ = cls.predict(x1,x2)
|
#paired_y_ = cls.predict(x1,x2)
|
||||||
eval(paired_y, paired_y_)
|
#eval(paired_y, paired_y_)
|
||||||
|
|
||||||
# attribution & verification
|
# attribution & verification
|
||||||
print('Attribution & Verification')
|
#print('Attribution & Verification')
|
||||||
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
|
#phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
|
||||||
cls = FullAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
|
#cls = FullAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
|
||||||
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
|
#cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
|
||||||
yte_ = cls.predict_labels(Xte)
|
#yte_ = cls.predict_labels(Xte)
|
||||||
eval(yte, yte_)
|
#eval(yte, yte_)
|
||||||
paired_y_ = cls.predict_sav(x1,x2)
|
#paired_y_ = cls.predict_sav(x1,x2)
|
||||||
eval(paired_y, paired_y_)
|
#eval(paired_y, paired_y_)
|
||||||
|
|
|
@ -0,0 +1,48 @@
|
||||||
|
# adapted from https://github.com/Shawn1993/cnn-text-classification-pytorch/blob/master/model.py
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class CNNProjection(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, vocabulary_size, embedding_dim, out_size, channels_out, kernel_sizes, dropout=0.5):
|
||||||
|
super(CNNProjection, self).__init__()
|
||||||
|
channels_in = 1
|
||||||
|
self.embed = nn.Embedding(vocabulary_size, embedding_dim)
|
||||||
|
self.convs1 = nn.ModuleList(
|
||||||
|
[nn.Conv2d(channels_in, channels_out, (K, embedding_dim)) for K in kernel_sizes]
|
||||||
|
)
|
||||||
|
'''
|
||||||
|
self.conv13 = nn.Conv2d(Ci, Co, (3, D))
|
||||||
|
self.conv14 = nn.Conv2d(Ci, Co, (4, D))
|
||||||
|
self.conv15 = nn.Conv2d(Ci, Co, (5, D))
|
||||||
|
'''
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.fc1 = nn.Linear(len(kernel_sizes) * channels_out, out_size)
|
||||||
|
self.output_size = out_size
|
||||||
|
|
||||||
|
def conv_and_pool(self, x, conv):
|
||||||
|
x = F.relu(conv(x)).squeeze(3) # (N, Co, W)
|
||||||
|
x = F.max_pool1d(x, x.size(2)).squeeze(2)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.embed(x) # (N, W, D)
|
||||||
|
x = x.unsqueeze(1) # (N, Ci, W, D)
|
||||||
|
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1] # [(N, Co, W), ...]*len(Ks)
|
||||||
|
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] # [(N, Co), ...]*len(Ks)
|
||||||
|
x = torch.cat(x, 1)
|
||||||
|
|
||||||
|
'''
|
||||||
|
x1 = self.conv_and_pool(x,self.conv13) #(N,Co)
|
||||||
|
x2 = self.conv_and_pool(x,self.conv14) #(N,Co)
|
||||||
|
x3 = self.conv_and_pool(x,self.conv15) #(N,Co)
|
||||||
|
x = torch.cat((x1, x2, x3), 1) # (N,len(Ks)*Co)
|
||||||
|
'''
|
||||||
|
x = self.dropout(x) # (N, len(Ks)*Co)
|
||||||
|
logit = self.fc1(x) # (N, C)
|
||||||
|
return logit
|
||||||
|
|
||||||
|
def space_dimensions(self):
|
||||||
|
return self.output_size
|
|
@ -0,0 +1,330 @@
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from tqdm import tqdm
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def tensor2numpy(t, device):
|
||||||
|
if device == 'cpu':
|
||||||
|
t = t.cpu()
|
||||||
|
return t.detach().numpy()
|
||||||
|
|
||||||
|
|
||||||
|
class AuthorshipAttributionClassifier(nn.Module):
|
||||||
|
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
|
||||||
|
super(AuthorshipAttributionClassifier, self).__init__()
|
||||||
|
self.projector = projector.to(device)
|
||||||
|
self.ff = FFProjection(input_size=projector.space_dimensions(),
|
||||||
|
hidden_sizes=[1024],
|
||||||
|
output_size=num_authors).to(device)
|
||||||
|
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False)
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def fit(self, X, y, batch_size, epochs, lr=0.001):
|
||||||
|
self.train()
|
||||||
|
batcher = Batch(batch_size=batch_size, n_epochs=epochs)
|
||||||
|
criterion = torch.nn.CrossEntropyLoss().to(self.device)
|
||||||
|
optim = torch.optim.Adam(self.parameters(), lr=lr)
|
||||||
|
|
||||||
|
pbar = tqdm(range(batcher.n_epochs))
|
||||||
|
for epoch in pbar:
|
||||||
|
losses = []
|
||||||
|
for xi, yi in batcher.epoch(X, y):
|
||||||
|
optim.zero_grad()
|
||||||
|
xi = self.padder.transform(xi)
|
||||||
|
logits = self.forward(torch.as_tensor(xi).to(self.device))
|
||||||
|
loss = criterion(logits, torch.as_tensor(yi).to(self.device))
|
||||||
|
loss.backward()
|
||||||
|
#clip_gradient(model)
|
||||||
|
optim.step()
|
||||||
|
losses.append(loss.item())
|
||||||
|
pbar.set_description(f'training epoch={epoch} loss={np.mean(losses):.5f}')
|
||||||
|
|
||||||
|
def predict(self, x, batch_size=100):
|
||||||
|
self.eval()
|
||||||
|
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
|
||||||
|
predictions = []
|
||||||
|
for xi in tqdm(batcher.epoch(x), desc='test'):
|
||||||
|
xi = self.padder.transform(xi)
|
||||||
|
logits = self.forward(torch.as_tensor(xi).to(self.device))
|
||||||
|
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1), self.device)
|
||||||
|
predictions.append(prediction)
|
||||||
|
return np.concatenate(predictions)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
phi = self.projector(x)
|
||||||
|
return self.ff(phi)
|
||||||
|
|
||||||
|
|
||||||
|
class SameAuthorClassifier(nn.Module):
|
||||||
|
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
|
||||||
|
super(SameAuthorClassifier, self).__init__()
|
||||||
|
self.projector = projector.to(device)
|
||||||
|
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False)
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def fit(self, X, y, batch_size, epochs, lr=0.001, steps_per_epoch=100):
|
||||||
|
self.train()
|
||||||
|
batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=steps_per_epoch)
|
||||||
|
optim = torch.optim.Adam(self.parameters(), lr=lr)
|
||||||
|
|
||||||
|
pbar = tqdm(range(batcher.n_epochs))
|
||||||
|
for epoch in pbar:
|
||||||
|
losses = []
|
||||||
|
for xi, yi in batcher.epoch(X, y):
|
||||||
|
optim.zero_grad()
|
||||||
|
xi = self.padder.transform(xi)
|
||||||
|
phi = self.projector(xi)
|
||||||
|
#normalize phi to have norm 1? maybe better as the last step of projector
|
||||||
|
kernel = torch.matmul(phi, phi.T)
|
||||||
|
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
|
||||||
|
loss = KernelAlignmentLoss(kernel, ideal_kernel)
|
||||||
|
loss.backward()
|
||||||
|
#clip_gradient(model)
|
||||||
|
optim.step()
|
||||||
|
losses.append(loss.item())
|
||||||
|
pbar.set_description(f'training epoch={epoch} loss={np.mean(losses):.5f}')
|
||||||
|
|
||||||
|
def predict(self, x, z, batch_size=100):
|
||||||
|
self.eval()
|
||||||
|
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
|
||||||
|
predictions = []
|
||||||
|
for xi, zi in tqdm(batcher.epoch(x, z), desc='test'):
|
||||||
|
xi = self.padder.transform(xi)
|
||||||
|
zi = self.padder.transform(zi)
|
||||||
|
inners = self.forward(xi, zi)
|
||||||
|
prediction = tensor2numpy(inners, device=self.device) > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
|
||||||
|
predictions.append(prediction)
|
||||||
|
return np.concatenate(predictions)
|
||||||
|
|
||||||
|
def forward(self, x, z):
|
||||||
|
assert x.shape == z.shape, 'shape mismatch between matrices x and z'
|
||||||
|
phi_x = self.projector(x)
|
||||||
|
phi_z = self.projector(z)
|
||||||
|
rows, cols = phi_x.shape
|
||||||
|
pairwise_inners = torch.bmm(phi_x.view(rows, 1, cols), phi_z.view(rows, cols, 1)).squeeze()
|
||||||
|
return pairwise_inners
|
||||||
|
|
||||||
|
|
||||||
|
class FullAuthorClassifier(nn.Module):
|
||||||
|
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
|
||||||
|
super(FullAuthorClassifier, self).__init__()
|
||||||
|
self.projector = projector.to(device)
|
||||||
|
self.ff = FFProjection(input_size=projector.space_dimensions(),
|
||||||
|
hidden_sizes=[1024],
|
||||||
|
output_size=num_authors).to(device)
|
||||||
|
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False)
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def fit(self, X, y, batch_size, epochs, lr=0.001, steps_per_epoch=100):
|
||||||
|
self.train()
|
||||||
|
batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=steps_per_epoch)
|
||||||
|
criterion = torch.nn.CrossEntropyLoss().to(self.device)
|
||||||
|
optim = torch.optim.Adam(self.parameters(), lr=lr)
|
||||||
|
alpha = 0.5
|
||||||
|
|
||||||
|
pbar = tqdm(range(batcher.n_epochs))
|
||||||
|
for epoch in pbar:
|
||||||
|
losses, sav_losses, attr_losses = [], [], []
|
||||||
|
for xi, yi in batcher.epoch(X, y):
|
||||||
|
optim.zero_grad()
|
||||||
|
xi = self.padder.transform(xi)
|
||||||
|
phi = self.projector(xi)
|
||||||
|
#normalize phi to have norm 1? maybe better as the last step of projector
|
||||||
|
|
||||||
|
#sav-loss
|
||||||
|
kernel = torch.matmul(phi, phi.T)
|
||||||
|
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
|
||||||
|
sav_loss = KernelAlignmentLoss(kernel, ideal_kernel)
|
||||||
|
sav_losses.append(sav_loss.item())
|
||||||
|
|
||||||
|
#attr-loss
|
||||||
|
logits = self.ff(phi)
|
||||||
|
attr_loss = criterion(logits, torch.as_tensor(yi).to(self.device))
|
||||||
|
attr_losses.append(attr_loss.item())
|
||||||
|
|
||||||
|
#loss
|
||||||
|
loss = (alpha)*sav_loss + (1-alpha)*attr_loss
|
||||||
|
losses.append(loss.item())
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
#clip_gradient(model)
|
||||||
|
optim.step()
|
||||||
|
pbar.set_description(
|
||||||
|
f'training epoch={epoch} '
|
||||||
|
f'sav-loss={np.mean(sav_losses):.5f} '
|
||||||
|
f'attr-loss={np.mean(attr_losses):.5f} '
|
||||||
|
f'loss={np.mean(losses):.5f}'
|
||||||
|
)
|
||||||
|
|
||||||
|
def predict_sav(self, x, z, batch_size=100):
|
||||||
|
self.eval()
|
||||||
|
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
|
||||||
|
predictions = []
|
||||||
|
for xi, zi in tqdm(batcher.epoch(x, z), desc='test'):
|
||||||
|
xi = self.padder.transform(xi)
|
||||||
|
zi = self.padder.transform(zi)
|
||||||
|
phi_xi = self.projector(xi)
|
||||||
|
phi_zi = self.projector(zi)
|
||||||
|
rows, cols = phi_xi.shape
|
||||||
|
pairwise_inners = torch.bmm(phi_xi.view(rows, 1, cols), phi_zi.view(rows, cols, 1)).squeeze()
|
||||||
|
prediction = tensor2numpy(pairwise_inners, device=self.device) > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
|
||||||
|
predictions.append(prediction)
|
||||||
|
return np.concatenate(predictions)
|
||||||
|
|
||||||
|
def predict_labels(self, x, batch_size=100):
|
||||||
|
self.eval()
|
||||||
|
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
|
||||||
|
predictions = []
|
||||||
|
for xi in tqdm(batcher.epoch(x), desc='test'):
|
||||||
|
xi = self.padder.transform(xi)
|
||||||
|
phi = self.projector(xi)
|
||||||
|
logits = self.ff(phi)
|
||||||
|
prediction = tensor2numpy( torch.argmax(logits, dim=1).view(-1), device=self.device)
|
||||||
|
predictions.append(prediction)
|
||||||
|
return np.concatenate(predictions)
|
||||||
|
|
||||||
|
|
||||||
|
def KernelAlignmentLoss(K, Y):
|
||||||
|
n_el = K.shape[0]*K.shape[1]
|
||||||
|
loss = torch.norm(K - Y, p='fro') # in Nello's paper this is different
|
||||||
|
loss = loss / n_el # this is in order to factor out the accumulation which is only due to the size
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class FFProjection(nn.Module):
|
||||||
|
def __init__(self, input_size, hidden_sizes, output_size, activation=nn.functional.relu, dropout=0.5):
|
||||||
|
super(FFProjection, self).__init__()
|
||||||
|
sizes = [input_size] + hidden_sizes + [output_size]
|
||||||
|
self.ff = nn.ModuleList([
|
||||||
|
nn.Linear(sizes[i], sizes[i+1]) for i in range(len(sizes)-1)
|
||||||
|
])
|
||||||
|
self.activation = activation
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
for linear in self.ff[:-1]:
|
||||||
|
x = self.dropout(self.activation(linear(x)))
|
||||||
|
x = self.ff[-1](x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class RNNProjection(nn.Module):
|
||||||
|
def __init__(self, vocab_size, hidden_size, output_size, device='cpu'):
|
||||||
|
super(RNNProjection, self).__init__()
|
||||||
|
self.output_size = output_size
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.num_layers=1
|
||||||
|
self.num_directions=1
|
||||||
|
self.device=device
|
||||||
|
|
||||||
|
self.embedding = nn.Embedding(vocab_size, hidden_size).to(device)
|
||||||
|
self.rnn = nn.GRU(
|
||||||
|
input_size=hidden_size,
|
||||||
|
hidden_size=hidden_size,
|
||||||
|
num_layers=self.num_layers,
|
||||||
|
bidirectional=(self.num_directions == 2),
|
||||||
|
batch_first=True
|
||||||
|
).to(device)
|
||||||
|
self.projection = nn.Linear(self.num_layers * self.num_directions * self.hidden_size, output_size).to(device)
|
||||||
|
|
||||||
|
def init_hidden(self, batch_size):
|
||||||
|
return torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size).to(self.device)
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
x = torch.as_tensor(input).to(self.device)
|
||||||
|
batch_size = x.shape[0]
|
||||||
|
x = self.embedding(x)
|
||||||
|
output, hn = self.rnn(x, self.init_hidden(batch_size))
|
||||||
|
hn = hn.view(self.num_layers, self.num_directions, batch_size, self.hidden_size)
|
||||||
|
hn = hn.permute(2, 0, 1, 3).reshape(batch_size, -1)
|
||||||
|
return self.projection(hn)
|
||||||
|
|
||||||
|
def space_dimensions(self):
|
||||||
|
return self.output_size
|
||||||
|
|
||||||
|
|
||||||
|
class Batch:
|
||||||
|
def __init__(self, batch_size, n_epochs, shuffle=True):
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.n_epochs = n_epochs
|
||||||
|
self.shuffle = shuffle
|
||||||
|
self.current_epoch = 0
|
||||||
|
|
||||||
|
def epoch(self, *args):
|
||||||
|
lengths = list(map(len, args))
|
||||||
|
assert max(lengths) == min(lengths), 'inconsistent sizes in args'
|
||||||
|
n_batches = math.ceil(lengths[0] / self.batch_size)
|
||||||
|
offset = 0
|
||||||
|
if self.shuffle:
|
||||||
|
index = np.random.permutation(len(args[0]))
|
||||||
|
args = [arg[index] for arg in args]
|
||||||
|
for b in range(n_batches):
|
||||||
|
batch_idx = slice(offset, offset+self.batch_size)
|
||||||
|
batch = [arg[batch_idx] for arg in args]
|
||||||
|
yield batch if len(batch) > 1 else batch[0]
|
||||||
|
offset += self.batch_size
|
||||||
|
self.current_epoch += 1
|
||||||
|
|
||||||
|
|
||||||
|
class TwoClassBatch:
|
||||||
|
"""
|
||||||
|
given a X and y (multi-label) produces batches of elements of X, y for two classes (e.g., c1, c2)
|
||||||
|
of equal size, i.e., the batch is [(x1,c1), ..., (xn,c1), (xn+1,c2), ..., (x2n,c2)]
|
||||||
|
"""
|
||||||
|
def __init__(self, batch_size, n_epochs, steps_per_epoch):
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.n_epochs = n_epochs
|
||||||
|
self.steps_per_epoch = steps_per_epoch
|
||||||
|
self.current_epoch = 0
|
||||||
|
if self.batch_size % 2 != 0:
|
||||||
|
raise ValueError('warning, batch size is not even')
|
||||||
|
|
||||||
|
def epoch(self, X, y):
|
||||||
|
n_el = len(y)
|
||||||
|
assert X.shape[0] == n_el, 'inconsistent sizes in X, y'
|
||||||
|
classes = np.unique(y)
|
||||||
|
groups = {ci: X[y==ci] for ci in classes}
|
||||||
|
class_prevalences = [len(groups[ci])/n_el for ci in classes]
|
||||||
|
n_choices = self.batch_size // 2
|
||||||
|
|
||||||
|
for b in range(self.steps_per_epoch):
|
||||||
|
class1, class2 = np.random.choice(classes, p=class_prevalences, size=2, replace=False)
|
||||||
|
X1 = np.random.choice(groups[class1], size=n_choices)
|
||||||
|
X2 = np.random.choice(groups[class2], size=n_choices)
|
||||||
|
X_batch = np.concatenate([X1,X2])
|
||||||
|
y_batch = np.repeat([class1, class2], repeats=[n_choices,n_choices])
|
||||||
|
yield X_batch, y_batch
|
||||||
|
self.current_epoch += 1
|
||||||
|
|
||||||
|
|
||||||
|
class Padding:
|
||||||
|
def __init__(self, pad_index, max_length, dynamic=True, pad_at_end=True):
|
||||||
|
"""
|
||||||
|
:param pad_index: the index representing the PAD token
|
||||||
|
:param max_length: the length that defines the padding
|
||||||
|
:param dynamic: if True (default) pads at min(max_length, max_local_length) where max_local_length is the
|
||||||
|
length of the longest example
|
||||||
|
:param pad_at_end: if True, the pad tokens are added at the end of the lists, if otherwise they are added
|
||||||
|
at the beginning
|
||||||
|
"""
|
||||||
|
self.pad = pad_index
|
||||||
|
self.max_length = max_length
|
||||||
|
self.dynamic = dynamic
|
||||||
|
self.pad_at_end = pad_at_end
|
||||||
|
|
||||||
|
def transform(self, X):
|
||||||
|
"""
|
||||||
|
:param X: a list of lists of indexes (integers)
|
||||||
|
:return: a ndarray of shape (n,m) where n is the number of elements in X and m is the pad length (the maximum
|
||||||
|
in elements of X if dynamic, or self.max_length if otherwise)
|
||||||
|
"""
|
||||||
|
X = [x[:self.max_length] for x in X]
|
||||||
|
lengths = list(map(len, X))
|
||||||
|
pad_length = min(max(lengths), self.max_length) if self.dynamic else self.max_length
|
||||||
|
if self.pad_at_end:
|
||||||
|
padded = [x + [self.pad] * (pad_length - x_len) for x, x_len in zip(X, lengths)]
|
||||||
|
else:
|
||||||
|
padded = [[self.pad] * (pad_length - x_len) + x for x, x_len in zip(X, lengths)]
|
||||||
|
return np.asarray(padded, dtype=int)
|
Loading…
Reference in New Issue