cuda enabled

This commit is contained in:
Alejandro Moreo Fernandez 2020-04-28 12:19:31 +02:00
parent 825e274058
commit 9b2110f9cf
2 changed files with 25 additions and 17 deletions

View File

@ -56,7 +56,7 @@ n_epochs=2
# attribution
print('Attribution')
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size)
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
cls = AuthorshipAttributionClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
yte_ = cls.predict(Xte)
@ -64,7 +64,7 @@ eval(yte, yte_)
# verification
print('Verification')
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size)
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
cls = SameAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
paired_y_ = cls.predict(x1,x2)
@ -72,7 +72,7 @@ eval(paired_y, paired_y_)
# attribution & verification
print('Attribution & Verification')
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size)
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size, device=device)
cls = FullAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
yte_ = cls.predict_labels(Xte)

View File

@ -5,6 +5,13 @@ from tqdm import tqdm
import math
def tensor2numpy(t,device):
if device=='cpu':
return t.detach().numpy()
else:
return t.cpu().detach().numpy()
class AuthorshipAttributionClassifier(nn.Module):
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
super(AuthorshipAttributionClassifier, self).__init__()
@ -26,7 +33,7 @@ class AuthorshipAttributionClassifier(nn.Module):
optim.zero_grad()
xi = self.padder.transform(xi)
logits = self.forward(xi)
loss = criterion(logits, torch.as_tensor(yi))
loss = criterion(logits, torch.as_tensor(yi).to(self.device))
loss.backward()
#clip_gradient(model)
optim.step()
@ -40,7 +47,7 @@ class AuthorshipAttributionClassifier(nn.Module):
for xi in tqdm(batcher.epoch(x), desc='test'):
xi = self.padder.transform(xi)
logits = self.forward(xi)
prediction = torch.argmax(logits, dim=1).view(-1).detach().numpy()
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1), self.device)
predictions.append(prediction)
return np.concatenate(predictions)
@ -70,7 +77,7 @@ class SameAuthorClassifier(nn.Module):
phi = self.projector(xi)
#normalize phi to have norm 1? maybe better as the last step of projector
kernel = torch.matmul(phi, phi.T)
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1))
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
loss = KernelAlignmentLoss(kernel, ideal_kernel)
loss.backward()
#clip_gradient(model)
@ -86,7 +93,7 @@ class SameAuthorClassifier(nn.Module):
xi = self.padder.transform(xi)
zi = self.padder.transform(zi)
inners = self.forward(xi, zi)
prediction = inners.detach().numpy() > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
prediction = tensor2numpy(inners, device=self.device) > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
predictions.append(prediction)
return np.concatenate(predictions)
@ -125,13 +132,13 @@ class FullAuthorClassifier(nn.Module):
#sav-loss
kernel = torch.matmul(phi, phi.T)
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1))
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
sav_loss = KernelAlignmentLoss(kernel, ideal_kernel)
sav_losses.append(sav_loss.item())
#attr-loss
logits = self.label(phi)
attr_loss = criterion(logits, torch.as_tensor(yi))
attr_loss = criterion(logits, torch.as_tensor(yi).to(self.device))
attr_losses.append(attr_loss.item())
#loss
@ -159,7 +166,7 @@ class FullAuthorClassifier(nn.Module):
phi_zi = self.projector(zi)
rows, cols = phi_xi.shape
pairwise_inners = torch.bmm(phi_xi.view(rows, 1, cols), phi_zi.view(rows, cols, 1)).squeeze()
prediction = pairwise_inners.detach().numpy() > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
prediction = tensor2numpy(pairwise_inners, device=self.device) > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
predictions.append(prediction)
return np.concatenate(predictions)
@ -171,7 +178,7 @@ class FullAuthorClassifier(nn.Module):
xi = self.padder.transform(xi)
phi = self.projector(xi)
logits = self.label(phi)
prediction = torch.argmax(logits, dim=1).view(-1).detach().numpy()
prediction =tensor2numpy( torch.argmax(logits, dim=1).view(-1), device=self.device)
predictions.append(prediction)
return np.concatenate(predictions)
@ -184,29 +191,30 @@ def KernelAlignmentLoss(K, Y):
class RNNProjection(nn.Module):
def __init__(self, vocab_size, hidden_size, output_size):
def __init__(self, vocab_size, hidden_size, output_size, device='cpu'):
super(RNNProjection, self).__init__()
self.output_size = output_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_layers=1
self.num_directions=1
self.device=device
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.embedding = nn.Embedding(vocab_size, hidden_size).to(device)
self.rnn = nn.GRU(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=self.num_layers,
bidirectional=(self.num_directions == 2),
batch_first=True
)
self.projection = nn.Linear(self.num_layers * self.num_directions * self.hidden_size, output_size)
).to(device)
self.projection = nn.Linear(self.num_layers * self.num_directions * self.hidden_size, output_size).to(device)
def init_hidden(self, batch_size):
return torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size) #.cuda()
return torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size).to(self.device)
def forward(self, input):
x = torch.as_tensor(input)
x = torch.as_tensor(input).to(self.device)
batch_size = x.shape[0]
x = self.embedding(x)
output, hn = self.rnn(x, self.init_hidden(batch_size))