QuaPy/Retrieval/plot_mrae_xaxis_k.py

125 lines
3.9 KiB
Python

import itertools
import os.path
import pickle
import numpy as np
from Retrieval.experiments import methods
from Retrieval.commons import CLASS_NAMES, Ks, DATA_SIZES
from os.path import join
import matplotlib.pyplot as plt
data_home = 'data'
class_mode = 'multiclass'
method_names = [name for name, *other in methods(None, 'continent')]
all_results = {}
class_name_label = {
'continent': 'Geographic Location',
'gender': 'Gender',
'years_category': 'Age of Topic'
}
# loads all MRAE results, and returns a dictionary containing the values, which is indexed by:
# class_name -> data_size -> method_name -> k -> stat -> float
# where stat is "mean", "std", "max"
def load_all_results():
for class_name in CLASS_NAMES:
all_results[class_name] = {}
for data_size in DATA_SIZES:
all_results[class_name][data_size] = {}
results_home = join('results', class_name, class_mode, data_size)
all_results[class_name][data_size] = {}
for method_name in method_names:
results_path = join(results_home, method_name + '.pkl')
try:
results = pickle.load(open(results_path, 'rb'))
except Exception as e:
print(f'missing result {results}', e)
all_results[class_name][data_size][method_name] = {}
for k in Ks:
all_results[class_name][data_size][method_name][k] = {}
values = results['mrae']
all_results[class_name][data_size][method_name][k]['mean'] = np.mean(values[k])
all_results[class_name][data_size][method_name][k]['std'] = np.std(values[k])
all_results[class_name][data_size][method_name][k]['max'] = np.max(values[k])
return all_results
results = load_all_results()
# generates the class-independent, size-independent plots for y-axis=MRAE in which:
# - the x-axis displays the Ks
for class_name in CLASS_NAMES:
for data_size in DATA_SIZES[:1]:
log = class_name=='gender'
fig, ax = plt.subplots()
max_means = []
markers = itertools.cycle(['o', 's', '^', 'D', 'v', '*', '+'])
for method_name in method_names:
# class_name -> data_size -> method_name -> k -> stat -> float
means = [
results[class_name][data_size][method_name][k]['mean'] for k in Ks
]
stds = [
results[class_name][data_size][method_name][k]['std'] for k in Ks
]
# max_mean = np.max([
# results[class_name][data_size][method_name][k]['max'] for k in Ks
# ])
max_means.append(max(means))
means = np.asarray(means)
stds = np.asarray(stds)
method_name = method_name.replace('NaiveQuery', 'Naive@$k$')
method_name = method_name.replace('KDEy-ML', 'KDEy')
marker = next(markers)
line = ax.plot(Ks, means, 'o-', label=method_name, color=None, linewidth=3, markersize=10, marker=marker)
color = line[-1].get_color()
if log:
ax.set_yscale('log')
# ax.fill_between(Ks, means - stds, means + stds, alpha=0.3, color=color)
ax.grid(True, which='both', axis='y', color='gray', linestyle='--', linewidth=0.3)
ax.set_xlabel('k')
ax.set_ylabel('RAE' + (' (log scale)' if log else ''))
data_size_label = '$\mathcal{L}_{10\mathrm{K}}$'
ax.set_title(f'{class_name_label[class_name]} from {data_size_label}')
ax.set_ylim([0, max(max_means)*1.05])
if class_name == 'years_category':
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
os.makedirs(f'plots/var_k/{class_name}', exist_ok=True)
plotpath = f'plots/var_k/{class_name}/{data_size}_mrae.pdf'
print(f'saving plot in {plotpath}')
plt.savefig(plotpath, bbox_inches='tight')