import itertools import os.path import pickle import numpy as np from Retrieval.experiments import methods from Retrieval.commons import CLASS_NAMES, Ks, DATA_SIZES from os.path import join import matplotlib.pyplot as plt data_home = 'data' class_mode = 'multiclass' method_names = [name for name, *other in methods(None, 'continent')] all_results = {} class_name_label = { 'continent': 'Geographic Location', 'gender': 'Gender', 'years_category': 'Age of Topic' } # loads all MRAE results, and returns a dictionary containing the values, which is indexed by: # class_name -> data_size -> method_name -> k -> stat -> float # where stat is "mean", "std", "max" def load_all_results(): for class_name in CLASS_NAMES: all_results[class_name] = {} for data_size in DATA_SIZES: all_results[class_name][data_size] = {} results_home = join('results', class_name, class_mode, data_size) all_results[class_name][data_size] = {} for method_name in method_names: results_path = join(results_home, method_name + '.pkl') try: results = pickle.load(open(results_path, 'rb')) except Exception as e: print(f'missing result {results}', e) all_results[class_name][data_size][method_name] = {} for k in Ks: all_results[class_name][data_size][method_name][k] = {} values = results['mrae'] all_results[class_name][data_size][method_name][k]['mean'] = np.mean(values[k]) all_results[class_name][data_size][method_name][k]['std'] = np.std(values[k]) all_results[class_name][data_size][method_name][k]['max'] = np.max(values[k]) return all_results results = load_all_results() # generates the class-independent, size-independent plots for y-axis=MRAE in which: # - the x-axis displays the Ks for class_name in CLASS_NAMES: for data_size in DATA_SIZES[:1]: log = class_name=='gender' fig, ax = plt.subplots() max_means = [] markers = itertools.cycle(['o', 's', '^', 'D', 'v', '*', '+']) for method_name in method_names: # class_name -> data_size -> method_name -> k -> stat -> float means = [ results[class_name][data_size][method_name][k]['mean'] for k in Ks ] stds = [ results[class_name][data_size][method_name][k]['std'] for k in Ks ] # max_mean = np.max([ # results[class_name][data_size][method_name][k]['max'] for k in Ks # ]) max_means.append(max(means)) means = np.asarray(means) stds = np.asarray(stds) method_name = method_name.replace('NaiveQuery', 'Naive@$k$') method_name = method_name.replace('KDEy-ML', 'KDEy') marker = next(markers) line = ax.plot(Ks, means, 'o-', label=method_name, color=None, linewidth=3, markersize=10, marker=marker) color = line[-1].get_color() if log: ax.set_yscale('log') # ax.fill_between(Ks, means - stds, means + stds, alpha=0.3, color=color) ax.grid(True, which='both', axis='y', color='gray', linestyle='--', linewidth=0.3) ax.set_xlabel('k') ax.set_ylabel('RAE' + (' (log scale)' if log else '')) data_size_label = '$\mathcal{L}_{10\mathrm{K}}$' ax.set_title(f'{class_name_label[class_name]} from {data_size_label}') ax.set_ylim([0, max(max_means)*1.05]) if class_name == 'years_category': ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) os.makedirs(f'plots/var_k/{class_name}', exist_ok=True) plotpath = f'plots/var_k/{class_name}/{data_size}_mrae.pdf' print(f'saving plot in {plotpath}') plt.savefig(plotpath, bbox_inches='tight')