switch
This commit is contained in:
parent
faba2494b2
commit
f30c6ceaa1
|
@ -1,4 +1,5 @@
|
||||||
import os
|
import os
|
||||||
|
import pickle
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
@ -67,6 +68,10 @@ def plot_bandwidth(val_choice, test_results):
|
||||||
|
|
||||||
bandwidths, results = zip(*test_results[dataset_name])
|
bandwidths, results = zip(*test_results[dataset_name])
|
||||||
|
|
||||||
|
print(dataset_name)
|
||||||
|
print(bandwidths)
|
||||||
|
print(results)
|
||||||
|
|
||||||
# Crear la gráfica
|
# Crear la gráfica
|
||||||
plt.figure(figsize=(8, 6))
|
plt.figure(figsize=(8, 6))
|
||||||
|
|
||||||
|
@ -74,12 +79,12 @@ def plot_bandwidth(val_choice, test_results):
|
||||||
plt.plot(bandwidths, results, marker='o')
|
plt.plot(bandwidths, results, marker='o')
|
||||||
|
|
||||||
# Agregar la línea vertical en bandwidth_chosen
|
# Agregar la línea vertical en bandwidth_chosen
|
||||||
plt.axvline(x=val_choice[dataset_name], color='r', linestyle='--', label=f'Bandwidth elegido: {val_choice[dataset_name]}')
|
plt.axvline(x=val_choice[dataset_name], color='r', linestyle='--', label=f'bandwidth mod-sel: {val_choice[dataset_name]}')
|
||||||
|
|
||||||
# Agregar etiquetas y título
|
# Agregar etiquetas y título
|
||||||
plt.xlabel('Bandwidth')
|
plt.xlabel('Bandwidth')
|
||||||
plt.ylabel('Resultado')
|
plt.ylabel('MAE')
|
||||||
plt.title('Gráfica de Bandwidth vs Resultado')
|
plt.title('bandwidth vs score')
|
||||||
|
|
||||||
# Mostrar la leyenda
|
# Mostrar la leyenda
|
||||||
plt.legend()
|
plt.legend()
|
||||||
|
@ -89,16 +94,25 @@ def plot_bandwidth(val_choice, test_results):
|
||||||
# plt.show()
|
# plt.show()
|
||||||
os.makedirs('./plots', exist_ok=True)
|
os.makedirs('./plots', exist_ok=True)
|
||||||
plt.savefig(f'./plots/{dataset_name}.png')
|
plt.savefig(f'./plots/{dataset_name}.png')
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for dataset in datasets():
|
for dataset in datasets():
|
||||||
|
print('NAME', dataset.name)
|
||||||
|
print(len(dataset.training))
|
||||||
|
print(len(dataset.test))
|
||||||
|
|
||||||
if DEBUG:
|
if DEBUG:
|
||||||
result_path = f'./results/debug/{dataset.name}.pkl'
|
result_path = f'./results/debug/{dataset.name}.pkl'
|
||||||
else:
|
else:
|
||||||
result_path = f'./results/{dataset.name}.pkl'
|
result_path = f'./results/{dataset.name}.pkl'
|
||||||
|
|
||||||
modsel_choice, dataset_results = qp.util.pickled_resource(result_path, experiment_dataset, dataset)
|
#modsel_choice, dataset_results = qp.util.pickled_resource(result_path, experiment_dataset, dataset)
|
||||||
|
if os.path.exists(result_path):
|
||||||
|
modsel_choice, dataset_results = pickle.load(open(result_path, 'rb'))
|
||||||
|
else:
|
||||||
|
continue
|
||||||
val_choice[dataset.name] = modsel_choice
|
val_choice[dataset.name] = modsel_choice
|
||||||
test_results[dataset.name] = dataset_results
|
test_results[dataset.name] = dataset_results
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue