diff --git a/KDEy/experiments.py b/KDEy/experiments.py index 44f6f00..d14ba01 100644 --- a/KDEy/experiments.py +++ b/KDEy/experiments.py @@ -1,4 +1,5 @@ import os +import pickle import numpy as np from sklearn.linear_model import LogisticRegression @@ -67,6 +68,10 @@ def plot_bandwidth(val_choice, test_results): bandwidths, results = zip(*test_results[dataset_name]) + print(dataset_name) + print(bandwidths) + print(results) + # Crear la gráfica plt.figure(figsize=(8, 6)) @@ -74,12 +79,12 @@ def plot_bandwidth(val_choice, test_results): plt.plot(bandwidths, results, marker='o') # Agregar la línea vertical en bandwidth_chosen - plt.axvline(x=val_choice[dataset_name], color='r', linestyle='--', label=f'Bandwidth elegido: {val_choice[dataset_name]}') + plt.axvline(x=val_choice[dataset_name], color='r', linestyle='--', label=f'bandwidth mod-sel: {val_choice[dataset_name]}') # Agregar etiquetas y título plt.xlabel('Bandwidth') - plt.ylabel('Resultado') - plt.title('Gráfica de Bandwidth vs Resultado') + plt.ylabel('MAE') + plt.title('bandwidth vs score') # Mostrar la leyenda plt.legend() @@ -89,16 +94,25 @@ def plot_bandwidth(val_choice, test_results): # plt.show() os.makedirs('./plots', exist_ok=True) plt.savefig(f'./plots/{dataset_name}.png') + plt.close() for dataset in datasets(): + print('NAME', dataset.name) + print(len(dataset.training)) + print(len(dataset.test)) + if DEBUG: result_path = f'./results/debug/{dataset.name}.pkl' else: result_path = f'./results/{dataset.name}.pkl' - modsel_choice, dataset_results = qp.util.pickled_resource(result_path, experiment_dataset, dataset) + #modsel_choice, dataset_results = qp.util.pickled_resource(result_path, experiment_dataset, dataset) + if os.path.exists(result_path): + modsel_choice, dataset_results = pickle.load(open(result_path, 'rb')) + else: + continue val_choice[dataset.name] = modsel_choice test_results[dataset.name] = dataset_results