switching to kde
This commit is contained in:
parent
641228bf62
commit
14ff3c9884
|
@ -3,7 +3,7 @@ from time import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
import quapy as qp
|
import quapy as qp
|
||||||
from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred
|
#from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred
|
||||||
from LocalStack.method import LocalStackingQuantification, LocalStackingQuantification2
|
from LocalStack.method import LocalStackingQuantification, LocalStackingQuantification2
|
||||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||||
from quapy.model_selection import GridSearchQ
|
from quapy.model_selection import GridSearchQ
|
||||||
|
@ -123,4 +123,4 @@ if __name__ == '__main__':
|
||||||
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
|
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
|
||||||
csv.flush()
|
csv.flush()
|
||||||
|
|
||||||
show_results(global_result_path)
|
show_results(global_result_path)
|
||||||
|
|
|
@ -3,7 +3,7 @@ import quapy as qp
|
||||||
from sklearn.multioutput import MultiOutputRegressor
|
from sklearn.multioutput import MultiOutputRegressor
|
||||||
from sklearn.svm import SVR
|
from sklearn.svm import SVR
|
||||||
|
|
||||||
from data import LabelledCollection
|
from quapy.data import LabelledCollection
|
||||||
from quapy.method.base import BaseQuantifier
|
from quapy.method.base import BaseQuantifier
|
||||||
from quapy.method.aggregative import AggregativeSoftQuantifier
|
from quapy.method.aggregative import AggregativeSoftQuantifier
|
||||||
|
|
||||||
|
@ -109,4 +109,4 @@ class LocalStackingQuantification2(BaseQuantifier):
|
||||||
corrected_prev = reg.predict([pred_prevs])[0]
|
corrected_prev = reg.predict([pred_prevs])[0]
|
||||||
|
|
||||||
corrected_prev = self.normalize(corrected_prev)
|
corrected_prev = self.normalize(corrected_prev)
|
||||||
return corrected_prev
|
return corrected_prev
|
||||||
|
|
Loading…
Reference in New Issue