diff --git a/LocalStack/experiments.py b/LocalStack/experiments.py index 6b083a5..d4c9f4a 100644 --- a/LocalStack/experiments.py +++ b/LocalStack/experiments.py @@ -3,7 +3,7 @@ from time import time import numpy as np from sklearn.linear_model import LogisticRegression import quapy as qp -from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred +#from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred from LocalStack.method import LocalStackingQuantification, LocalStackingQuantification2 from quapy.method.aggregative import PACC, EMQ, KDEyML from quapy.model_selection import GridSearchQ @@ -123,4 +123,4 @@ if __name__ == '__main__': csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n') csv.flush() - show_results(global_result_path) \ No newline at end of file + show_results(global_result_path) diff --git a/LocalStack/method.py b/LocalStack/method.py index 157c73d..ffa7e74 100644 --- a/LocalStack/method.py +++ b/LocalStack/method.py @@ -3,7 +3,7 @@ import quapy as qp from sklearn.multioutput import MultiOutputRegressor from sklearn.svm import SVR -from data import LabelledCollection +from quapy.data import LabelledCollection from quapy.method.base import BaseQuantifier from quapy.method.aggregative import AggregativeSoftQuantifier @@ -109,4 +109,4 @@ class LocalStackingQuantification2(BaseQuantifier): corrected_prev = reg.predict([pred_prevs])[0] corrected_prev = self.normalize(corrected_prev) - return corrected_prev \ No newline at end of file + return corrected_prev