local stack
This commit is contained in:
parent
a271fe1231
commit
04c1f286ce
|
@ -0,0 +1,126 @@
|
||||||
|
import os
|
||||||
|
from time import time
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
import quapy as qp
|
||||||
|
from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred
|
||||||
|
from LocalStack.method import LocalStackingQuantification, LocalStackingQuantification2
|
||||||
|
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||||
|
from quapy.model_selection import GridSearchQ
|
||||||
|
from quapy.protocol import UPP
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
SEED = 1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
METHODS = [
|
||||||
|
('PACC', PACC(), {}),
|
||||||
|
('EMQ', EMQ(), {}),
|
||||||
|
('KDEy-ML', KDEyML(), {}),
|
||||||
|
]
|
||||||
|
|
||||||
|
TRANSDUCTIVE_METHODS = [
|
||||||
|
('LSQ', LocalStackingQuantification(EMQ()), {}),
|
||||||
|
('LSQ2', LocalStackingQuantification2(EMQ()), {})
|
||||||
|
]
|
||||||
|
|
||||||
|
def show_results(result_path):
|
||||||
|
import pandas as pd
|
||||||
|
df = pd.read_csv(result_path + '.csv', sep='\t')
|
||||||
|
pd.set_option('display.max_columns', None)
|
||||||
|
pd.set_option('display.max_rows', None)
|
||||||
|
pd.set_option('display.width', 1000) # Ajustar el ancho máximo
|
||||||
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE"], margins=True)
|
||||||
|
print(pv)
|
||||||
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["MRAE"], margins=True)
|
||||||
|
print(pv)
|
||||||
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["KLD"], margins=True)
|
||||||
|
print(pv)
|
||||||
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["TR-TIME"], margins=True)
|
||||||
|
print(pv)
|
||||||
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["TE-TIME"], margins=True)
|
||||||
|
print(pv)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
qp.environ['SAMPLE_SIZE'] = 500
|
||||||
|
qp.environ['N_JOBS'] = -1
|
||||||
|
n_bags_val = 25
|
||||||
|
n_bags_test = 100
|
||||||
|
result_dir = f'results_quantification/localstack'
|
||||||
|
|
||||||
|
os.makedirs(result_dir, exist_ok=True)
|
||||||
|
|
||||||
|
global_result_path = f'{result_dir}/allmethods'
|
||||||
|
with open(global_result_path + '.csv', 'wt') as csv:
|
||||||
|
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
|
||||||
|
|
||||||
|
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
|
||||||
|
|
||||||
|
print('Init method', method_name)
|
||||||
|
|
||||||
|
with open(global_result_path + '.csv', 'at') as csv:
|
||||||
|
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
|
||||||
|
print('init', dataset)
|
||||||
|
|
||||||
|
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
|
||||||
|
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
|
||||||
|
|
||||||
|
if os.path.exists(local_result_path):
|
||||||
|
print(f'result file {local_result_path} already exist; skipping')
|
||||||
|
report = qp.util.load_report(local_result_path)
|
||||||
|
|
||||||
|
else:
|
||||||
|
with qp.util.temp_seed(SEED):
|
||||||
|
|
||||||
|
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
|
||||||
|
train, test = data.train_test
|
||||||
|
|
||||||
|
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
|
||||||
|
|
||||||
|
if method_name not in transductive_names:
|
||||||
|
if len(param_grid) == 0:
|
||||||
|
t_init = time()
|
||||||
|
quantifier.fit(train)
|
||||||
|
train_time = time() - t_init
|
||||||
|
else:
|
||||||
|
# model selection (train)
|
||||||
|
train, val = train.split_stratified(random_state=SEED)
|
||||||
|
protocol = UPP(val, repeats=n_bags_val)
|
||||||
|
modsel = GridSearchQ(
|
||||||
|
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
|
||||||
|
)
|
||||||
|
t_init = time()
|
||||||
|
try:
|
||||||
|
modsel.fit(train)
|
||||||
|
print(f'best params {modsel.best_params_}')
|
||||||
|
print(f'best score {modsel.best_score_}')
|
||||||
|
quantifier = modsel.best_model()
|
||||||
|
except:
|
||||||
|
print('something went wrong... trying to fit the default model')
|
||||||
|
quantifier.fit(train)
|
||||||
|
train_time = time() - t_init
|
||||||
|
else:
|
||||||
|
# transductive
|
||||||
|
t_init = time()
|
||||||
|
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
|
||||||
|
train_time = time() - t_init
|
||||||
|
|
||||||
|
# test
|
||||||
|
t_init = time()
|
||||||
|
protocol = UPP(test, repeats=n_bags_test)
|
||||||
|
report = qp.evaluation.evaluation_report(
|
||||||
|
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
|
||||||
|
)
|
||||||
|
test_time = time() - t_init
|
||||||
|
report['tr_time'] = train_time
|
||||||
|
report['te_time'] = test_time
|
||||||
|
report.to_csv(local_result_path)
|
||||||
|
|
||||||
|
means = report.mean(numeric_only=True)
|
||||||
|
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
|
||||||
|
csv.flush()
|
||||||
|
|
||||||
|
show_results(global_result_path)
|
|
@ -0,0 +1,112 @@
|
||||||
|
import numpy as np
|
||||||
|
import quapy as qp
|
||||||
|
from sklearn.multioutput import MultiOutputRegressor
|
||||||
|
from sklearn.svm import SVR
|
||||||
|
|
||||||
|
from data import LabelledCollection
|
||||||
|
from quapy.method.base import BaseQuantifier
|
||||||
|
from quapy.method.aggregative import AggregativeSoftQuantifier
|
||||||
|
|
||||||
|
|
||||||
|
class LocalStackingQuantification(BaseQuantifier):
|
||||||
|
|
||||||
|
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae', random_state=None):
|
||||||
|
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||||
|
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||||
|
self.surrogate_quantifier = surrogate_quantifier
|
||||||
|
self.n_samples_gen = n_samples_gen
|
||||||
|
self.n_samples_sel = n_samples_sel
|
||||||
|
self.comparison_measure = qp.error.from_name(comparison_measure)
|
||||||
|
self.random_state = random_state
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection):
|
||||||
|
train, val = data.split_stratified()
|
||||||
|
self.surrogate_quantifier.fit(train)
|
||||||
|
self.val_data = val
|
||||||
|
return self
|
||||||
|
|
||||||
|
def normalize(self, out_simplex:np.ndarray):
|
||||||
|
in_simplex = out_simplex/out_simplex.sum()
|
||||||
|
return in_simplex
|
||||||
|
|
||||||
|
def quantify(self, instances: np.ndarray):
|
||||||
|
assert hasattr(self, 'val_data'), 'quantify called before fit'
|
||||||
|
pred_prevs = self.surrogate_quantifier.quantify(instances)
|
||||||
|
test_size = instances.shape[0]
|
||||||
|
|
||||||
|
samples = []
|
||||||
|
samples_pred_prevs = []
|
||||||
|
samples_distance = []
|
||||||
|
for i in range(self.n_samples_gen):
|
||||||
|
sample_i = self.val_data.sampling(test_size, *pred_prevs, random_state=self.random_state)
|
||||||
|
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||||
|
err_dist = self.comparison_measure(pred_prevs, pred_prev_sample_i)
|
||||||
|
|
||||||
|
samples.append(sample_i)
|
||||||
|
samples_pred_prevs.append(pred_prev_sample_i)
|
||||||
|
samples_distance.append(err_dist)
|
||||||
|
|
||||||
|
ord_distances = np.argsort(samples_distance)
|
||||||
|
samples_sel = np.asarray(samples)[ord_distances][:self.n_samples_sel]
|
||||||
|
samples_pred_prevs_sel = np.asarray(samples_pred_prevs)[ord_distances][:self.n_samples_sel]
|
||||||
|
|
||||||
|
reg = MultiOutputRegressor(SVR())
|
||||||
|
reg_X = samples_pred_prevs_sel
|
||||||
|
reg_y = [s.prevalence() for s in samples_sel]
|
||||||
|
reg.fit(reg_X, reg_y)
|
||||||
|
|
||||||
|
corrected_prev = reg.predict([pred_prevs])[0]
|
||||||
|
|
||||||
|
corrected_prev = self.normalize(corrected_prev)
|
||||||
|
return corrected_prev
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class LocalStackingQuantification2(BaseQuantifier):
|
||||||
|
|
||||||
|
"""
|
||||||
|
Este en vez de seleccionar samples de training para los que la prevalencia predicha se parece a la prevalencia
|
||||||
|
predica en test, saca directamente samples de training con la prevalencia predicha en test
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae', random_state=None):
|
||||||
|
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||||
|
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||||
|
self.surrogate_quantifier = surrogate_quantifier
|
||||||
|
self.n_samples_gen = n_samples_gen
|
||||||
|
self.n_samples_sel = n_samples_sel
|
||||||
|
self.comparison_measure = qp.error.from_name(comparison_measure)
|
||||||
|
self.random_state = random_state
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection):
|
||||||
|
train, val = data.split_stratified()
|
||||||
|
self.surrogate_quantifier.fit(train)
|
||||||
|
self.val_data = val
|
||||||
|
return self
|
||||||
|
|
||||||
|
def normalize(self, out_simplex:np.ndarray):
|
||||||
|
in_simplex = out_simplex/out_simplex.sum()
|
||||||
|
return in_simplex
|
||||||
|
|
||||||
|
def quantify(self, instances: np.ndarray):
|
||||||
|
assert hasattr(self, 'val_data'), 'quantify called before fit'
|
||||||
|
pred_prevs = self.surrogate_quantifier.quantify(instances)
|
||||||
|
test_size = instances.shape[0]
|
||||||
|
|
||||||
|
samples = []
|
||||||
|
samples_pred_prevs = []
|
||||||
|
for i in range(self.n_samples_gen):
|
||||||
|
sample_i = self.val_data.sampling(test_size, *pred_prevs, random_state=self.random_state)
|
||||||
|
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||||
|
samples.append(sample_i)
|
||||||
|
samples_pred_prevs.append(pred_prev_sample_i)
|
||||||
|
|
||||||
|
reg = MultiOutputRegressor(SVR())
|
||||||
|
reg_X = samples_pred_prevs
|
||||||
|
reg_y = [s.prevalence() for s in samples]
|
||||||
|
reg.fit(reg_X, reg_y)
|
||||||
|
|
||||||
|
corrected_prev = reg.predict([pred_prevs])[0]
|
||||||
|
|
||||||
|
corrected_prev = self.normalize(corrected_prev)
|
||||||
|
return corrected_prev
|
Loading…
Reference in New Issue