From 04c1f286ce495f0bcb32129c18ae5b66376b6a71 Mon Sep 17 00:00:00 2001 From: Alejandro Moreo Date: Thu, 26 Sep 2024 16:05:03 +0200 Subject: [PATCH] local stack --- LocalStack/experiments.py | 126 ++++++++++++++++++++++++++++++++++++++ LocalStack/method.py | 112 +++++++++++++++++++++++++++++++++ 2 files changed, 238 insertions(+) create mode 100644 LocalStack/experiments.py create mode 100644 LocalStack/method.py diff --git a/LocalStack/experiments.py b/LocalStack/experiments.py new file mode 100644 index 0000000..6b083a5 --- /dev/null +++ b/LocalStack/experiments.py @@ -0,0 +1,126 @@ +import os +from time import time +import numpy as np +from sklearn.linear_model import LogisticRegression +import quapy as qp +from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred +from LocalStack.method import LocalStackingQuantification, LocalStackingQuantification2 +from quapy.method.aggregative import PACC, EMQ, KDEyML +from quapy.model_selection import GridSearchQ +from quapy.protocol import UPP +from pathlib import Path + +SEED = 1 + + + +METHODS = [ + ('PACC', PACC(), {}), + ('EMQ', EMQ(), {}), + ('KDEy-ML', KDEyML(), {}), +] + +TRANSDUCTIVE_METHODS = [ + ('LSQ', LocalStackingQuantification(EMQ()), {}), + ('LSQ2', LocalStackingQuantification2(EMQ()), {}) +] + +def show_results(result_path): + import pandas as pd + df = pd.read_csv(result_path + '.csv', sep='\t') + pd.set_option('display.max_columns', None) + pd.set_option('display.max_rows', None) + pd.set_option('display.width', 1000) # Ajustar el ancho máximo + pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE"], margins=True) + print(pv) + pv = df.pivot_table(index='Dataset', columns="Method", values=["MRAE"], margins=True) + print(pv) + pv = df.pivot_table(index='Dataset', columns="Method", values=["KLD"], margins=True) + print(pv) + pv = df.pivot_table(index='Dataset', columns="Method", values=["TR-TIME"], margins=True) + print(pv) + pv = df.pivot_table(index='Dataset', columns="Method", values=["TE-TIME"], margins=True) + print(pv) + + +if __name__ == '__main__': + + qp.environ['SAMPLE_SIZE'] = 500 + qp.environ['N_JOBS'] = -1 + n_bags_val = 25 + n_bags_test = 100 + result_dir = f'results_quantification/localstack' + + os.makedirs(result_dir, exist_ok=True) + + global_result_path = f'{result_dir}/allmethods' + with open(global_result_path + '.csv', 'wt') as csv: + csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n') + + for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS: + + print('Init method', method_name) + + with open(global_result_path + '.csv', 'at') as csv: + for dataset in qp.datasets.UCI_MULTICLASS_DATASETS: + print('init', dataset) + + # run_experiment(global_result_path, method_name, quantifier, param_grid, dataset) + local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe') + + if os.path.exists(local_result_path): + print(f'result file {local_result_path} already exist; skipping') + report = qp.util.load_report(local_result_path) + + else: + with qp.util.temp_seed(SEED): + + data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True) + train, test = data.train_test + + transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS] + + if method_name not in transductive_names: + if len(param_grid) == 0: + t_init = time() + quantifier.fit(train) + train_time = time() - t_init + else: + # model selection (train) + train, val = train.split_stratified(random_state=SEED) + protocol = UPP(val, repeats=n_bags_val) + modsel = GridSearchQ( + quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae' + ) + t_init = time() + try: + modsel.fit(train) + print(f'best params {modsel.best_params_}') + print(f'best score {modsel.best_score_}') + quantifier = modsel.best_model() + except: + print('something went wrong... trying to fit the default model') + quantifier.fit(train) + train_time = time() - t_init + else: + # transductive + t_init = time() + quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only) + train_time = time() - t_init + + # test + t_init = time() + protocol = UPP(test, repeats=n_bags_test) + report = qp.evaluation.evaluation_report( + quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True + ) + test_time = time() - t_init + report['tr_time'] = train_time + report['te_time'] = test_time + report.to_csv(local_result_path) + + means = report.mean(numeric_only=True) + csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n') + csv.flush() + + show_results(global_result_path) \ No newline at end of file diff --git a/LocalStack/method.py b/LocalStack/method.py new file mode 100644 index 0000000..157c73d --- /dev/null +++ b/LocalStack/method.py @@ -0,0 +1,112 @@ +import numpy as np +import quapy as qp +from sklearn.multioutput import MultiOutputRegressor +from sklearn.svm import SVR + +from data import LabelledCollection +from quapy.method.base import BaseQuantifier +from quapy.method.aggregative import AggregativeSoftQuantifier + + +class LocalStackingQuantification(BaseQuantifier): + + def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae', random_state=None): + assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \ + f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}' + self.surrogate_quantifier = surrogate_quantifier + self.n_samples_gen = n_samples_gen + self.n_samples_sel = n_samples_sel + self.comparison_measure = qp.error.from_name(comparison_measure) + self.random_state = random_state + + def fit(self, data: LabelledCollection): + train, val = data.split_stratified() + self.surrogate_quantifier.fit(train) + self.val_data = val + return self + + def normalize(self, out_simplex:np.ndarray): + in_simplex = out_simplex/out_simplex.sum() + return in_simplex + + def quantify(self, instances: np.ndarray): + assert hasattr(self, 'val_data'), 'quantify called before fit' + pred_prevs = self.surrogate_quantifier.quantify(instances) + test_size = instances.shape[0] + + samples = [] + samples_pred_prevs = [] + samples_distance = [] + for i in range(self.n_samples_gen): + sample_i = self.val_data.sampling(test_size, *pred_prevs, random_state=self.random_state) + pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X) + err_dist = self.comparison_measure(pred_prevs, pred_prev_sample_i) + + samples.append(sample_i) + samples_pred_prevs.append(pred_prev_sample_i) + samples_distance.append(err_dist) + + ord_distances = np.argsort(samples_distance) + samples_sel = np.asarray(samples)[ord_distances][:self.n_samples_sel] + samples_pred_prevs_sel = np.asarray(samples_pred_prevs)[ord_distances][:self.n_samples_sel] + + reg = MultiOutputRegressor(SVR()) + reg_X = samples_pred_prevs_sel + reg_y = [s.prevalence() for s in samples_sel] + reg.fit(reg_X, reg_y) + + corrected_prev = reg.predict([pred_prevs])[0] + + corrected_prev = self.normalize(corrected_prev) + return corrected_prev + + + +class LocalStackingQuantification2(BaseQuantifier): + + """ + Este en vez de seleccionar samples de training para los que la prevalencia predicha se parece a la prevalencia + predica en test, saca directamente samples de training con la prevalencia predicha en test + """ + + def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae', random_state=None): + assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \ + f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}' + self.surrogate_quantifier = surrogate_quantifier + self.n_samples_gen = n_samples_gen + self.n_samples_sel = n_samples_sel + self.comparison_measure = qp.error.from_name(comparison_measure) + self.random_state = random_state + + def fit(self, data: LabelledCollection): + train, val = data.split_stratified() + self.surrogate_quantifier.fit(train) + self.val_data = val + return self + + def normalize(self, out_simplex:np.ndarray): + in_simplex = out_simplex/out_simplex.sum() + return in_simplex + + def quantify(self, instances: np.ndarray): + assert hasattr(self, 'val_data'), 'quantify called before fit' + pred_prevs = self.surrogate_quantifier.quantify(instances) + test_size = instances.shape[0] + + samples = [] + samples_pred_prevs = [] + for i in range(self.n_samples_gen): + sample_i = self.val_data.sampling(test_size, *pred_prevs, random_state=self.random_state) + pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X) + samples.append(sample_i) + samples_pred_prevs.append(pred_prev_sample_i) + + reg = MultiOutputRegressor(SVR()) + reg_X = samples_pred_prevs + reg_y = [s.prevalence() for s in samples] + reg.fit(reg_X, reg_y) + + corrected_prev = reg.predict([pred_prevs])[0] + + corrected_prev = self.normalize(corrected_prev) + return corrected_prev \ No newline at end of file