1
0
Fork 0
QuaPy/NewMethods/uci_plots.py

100 lines
3.8 KiB
Python

import quapy as qp
import os
import pathlib
import pickle
from glob import glob
import sys
from plot_driftbox import brokenbar_supremacy_by_drift
from uci_experiments import *
from uci_tables import METHODS
from os.path import join
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE
plotext='png'
resultdir = './results_uci'
plotdir = './plots_uci'
os.makedirs(plotdir, exist_ok=True)
N_RUNS = N_FOLDS * N_REPEATS
def gather_results(methods, error_name, resultdir):
method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
for method in methods:
for run in range(N_RUNS):
for experiment in glob(f'{resultdir}/*-{method}-run{run}-m{error_name}.pkl'):
true_prevalences, estim_prevalences, tr_prev, te_prev, best_params = pickle.load(open(experiment, 'rb'))
method_names.append(nicename(method))
true_prevs.append(true_prevalences)
estim_prevs.append(estim_prevalences)
tr_prevs.append(tr_prev)
return method_names, true_prevs, estim_prevs, tr_prevs
def plot_error_by_drift(methods, error_name, logscale=False, path=None):
print('plotting error by drift')
if path is not None:
path = join(path, f'error_by_drift_{error_name}.{plotext}')
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir)
qp.plot.error_by_drift(
method_names,
true_prevs,
estim_prevs,
tr_prevs,
n_bins=20,
error_name=error_name,
show_std=True,
logscale=logscale,
title=f'Quantification error as a function of distribution shift',
savepath=path
)
def diagonal_plot(methods, error_name, path=None):
print('plotting diagonal plots')
if path is not None:
path = join(path, f'diag_{error_name}')
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir)
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title='Positive', legend=True, show_std=True, savepath=f'{path}_pos.{plotext}')
def binary_bias_global(methods, error_name, path=None):
print('plotting bias global')
if path is not None:
path = join(path, f'globalbias_{error_name}')
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir)
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, pos_class=1, title='Positive', savepath=f'{path}_pos.{plotext}')
def binary_bias_bins(methods, error_name, path=None):
print('plotting bias local')
if path is not None:
path = join(path, f'localbias_{error_name}')
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir)
qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title='Positive', legend=True, savepath=f'{path}_pos.{plotext}')
def brokenbar_supr(methods, error_name, path=None):
print('plotting brokenbar_supr')
if path is not None:
path = join(path, f'broken_{error_name}')
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir)
brokenbar_supremacy_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=10, binning='isometric',
x_error='ae', y_error='ae', ttest_alpha=0.005, tail_density_threshold=0.005,
savepath=path)
if __name__ == '__main__':
# plot_error_by_drift(METHODS, error_name='ae', path=plotdir)
# diagonal_plot(METHODS, error_name='ae', path=plotdir)
# binary_bias_global(METHODS, error_name='ae', path=plotdir)
# binary_bias_bins(METHODS, error_name='ae', path=plotdir)
# brokenbar_supr(METHODS, error_name='ae', path=plotdir)
brokenbar_supr(METHODS, error_name='ae', path=plotdir)