import quapy as qp import os import pathlib import pickle from glob import glob import sys from plot_driftbox import brokenbar_supremacy_by_drift from uci_experiments import * from uci_tables import METHODS from os.path import join qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE plotext='png' resultdir = './results_uci' plotdir = './plots_uci' os.makedirs(plotdir, exist_ok=True) N_RUNS = N_FOLDS * N_REPEATS def gather_results(methods, error_name, resultdir): method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], [] for method in methods: for run in range(N_RUNS): for experiment in glob(f'{resultdir}/*-{method}-run{run}-m{error_name}.pkl'): true_prevalences, estim_prevalences, tr_prev, te_prev, best_params = pickle.load(open(experiment, 'rb')) method_names.append(nicename(method)) true_prevs.append(true_prevalences) estim_prevs.append(estim_prevalences) tr_prevs.append(tr_prev) return method_names, true_prevs, estim_prevs, tr_prevs def plot_error_by_drift(methods, error_name, logscale=False, path=None): print('plotting error by drift') if path is not None: path = join(path, f'error_by_drift_{error_name}.{plotext}') method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir) qp.plot.error_by_drift( method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, error_name=error_name, show_std=True, logscale=logscale, title=f'Quantification error as a function of distribution shift', savepath=path ) def diagonal_plot(methods, error_name, path=None): print('plotting diagonal plots') if path is not None: path = join(path, f'diag_{error_name}') method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir) qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title='Positive', legend=True, show_std=True, savepath=f'{path}_pos.{plotext}') def binary_bias_global(methods, error_name, path=None): print('plotting bias global') if path is not None: path = join(path, f'globalbias_{error_name}') method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir) qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, pos_class=1, title='Positive', savepath=f'{path}_pos.{plotext}') def binary_bias_bins(methods, error_name, path=None): print('plotting bias local') if path is not None: path = join(path, f'localbias_{error_name}') method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir) qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title='Positive', legend=True, savepath=f'{path}_pos.{plotext}') def brokenbar_supr(methods, error_name, path=None): print('plotting brokenbar_supr') if path is not None: path = join(path, f'broken_{error_name}') method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name, resultdir) brokenbar_supremacy_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=10, binning='isometric', x_error='ae', y_error='ae', ttest_alpha=0.005, tail_density_threshold=0.005, savepath=path) if __name__ == '__main__': # plot_error_by_drift(METHODS, error_name='ae', path=plotdir) # diagonal_plot(METHODS, error_name='ae', path=plotdir) # binary_bias_global(METHODS, error_name='ae', path=plotdir) # binary_bias_bins(METHODS, error_name='ae', path=plotdir) # brokenbar_supr(METHODS, error_name='ae', path=plotdir) brokenbar_supr(METHODS, error_name='ae', path=plotdir)