forked from moreo/QuaPy
291 lines
13 KiB
Python
291 lines
13 KiB
Python
import argparse
|
|
from sklearn.calibration import CalibratedClassifierCV
|
|
from sklearn.linear_model import LogisticRegression
|
|
import itertools
|
|
|
|
from sklearn.multiclass import OneVsRestClassifier
|
|
from sklearn.multioutput import ClassifierChain
|
|
from tqdm import tqdm
|
|
from skmultilearn.dataset import load_dataset, available_data_sets
|
|
from scipy.sparse import csr_matrix
|
|
import quapy as qp
|
|
from MultiLabel.mlclassification import MLStackedClassifier, LabelSpacePartion, MLTwinSVM, MLknn
|
|
from MultiLabel.mldata import MultilabelledCollection
|
|
from MultiLabel.mlquantification import MLNaiveQuantifier, MLCC, MLPCC, MLRegressionQuantification, \
|
|
MLACC, \
|
|
MLPACC, MLNaiveAggregativeQuantifier, MLMLPE, StackMLRQuantifier, MLadjustedCount, MLprobAdjustedCount
|
|
from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy
|
|
import numpy as np
|
|
from data.dataset import Dataset
|
|
from mlevaluation import ml_natural_prevalence_prediction, ml_artificial_prevalence_prediction
|
|
import sys
|
|
import os
|
|
import pickle
|
|
|
|
|
|
def cls():
|
|
# return LinearSVC()
|
|
return LogisticRegression(max_iter=1000, solver='lbfgs')
|
|
|
|
|
|
def calibratedCls():
|
|
return CalibratedClassifierCV(cls())
|
|
|
|
# DEBUG=True
|
|
|
|
# if DEBUG:
|
|
sample_size = 100
|
|
n_samples = 5000
|
|
|
|
SKMULTILEARN_ALL_DATASETS = sorted(set([x[0] for x in available_data_sets().keys()]))
|
|
SKMULTILEARN_RED_DATASETS = [x+'-red' for x in SKMULTILEARN_ALL_DATASETS]
|
|
TC_DATASETS = ['reuters21578', 'jrcall', 'ohsumed', 'rcv1']
|
|
|
|
DATASETS = TC_DATASETS
|
|
|
|
|
|
|
|
|
|
|
|
def models():
|
|
yield 'MLPE', MLMLPE()
|
|
yield 'NaiveCC', MLNaiveAggregativeQuantifier(CC(cls()))
|
|
yield 'NaivePCC', MLNaiveAggregativeQuantifier(PCC(cls()))
|
|
yield 'NaivePCCcal', MLNaiveAggregativeQuantifier(PCC(calibratedCls()))
|
|
yield 'NaiveACC', MLNaiveAggregativeQuantifier(ACC(cls()))
|
|
yield 'NaivePACC', MLNaiveAggregativeQuantifier(PACC(cls()))
|
|
yield 'NaivePACCcal', MLNaiveAggregativeQuantifier(PACC(calibratedCls()))
|
|
yield 'NaiveACCit', MLNaiveAggregativeQuantifier(ACC(cls()))
|
|
yield 'NaivePACCit', MLNaiveAggregativeQuantifier(PACC(cls()))
|
|
# yield 'NaiveHDy', MLNaiveAggregativeQuantifier(HDy(cls()))
|
|
# yield 'NaiveSLD', MLNaiveAggregativeQuantifier(EMQ(calibratedCls()))
|
|
yield 'StackCC', MLCC(MLStackedClassifier(cls()))
|
|
yield 'StackPCC', MLPCC(MLStackedClassifier(cls()))
|
|
yield 'StackPCCcal', MLPCC(MLStackedClassifier(calibratedCls()))
|
|
yield 'StackACC', MLACC(MLStackedClassifier(cls()))
|
|
yield 'StackPACC', MLPACC(MLStackedClassifier(cls()))
|
|
yield 'StackPACCcal', MLPACC(MLStackedClassifier(calibratedCls()))
|
|
yield 'StackACCit', MLACC(MLStackedClassifier(cls()))
|
|
yield 'StackPACCit', MLPACC(MLStackedClassifier(cls()))
|
|
# yield 'ChainCC', MLCC(ClassifierChain(cls(), cv=None))
|
|
# yield 'ChainPCC', MLPCC(ClassifierChain(cls(), cv=None))
|
|
# yield 'ChainACC', MLACC(ClassifierChain(cls(), cv=None))
|
|
# yield 'ChainPACC', MLPACC(ClassifierChain(cls(), cv=None))
|
|
common={'sample_size':sample_size, 'n_samples': n_samples, 'norm': True, 'means':False, 'stds':False, 'regression':'svr'}
|
|
yield 'MRQ-CC', MLRegressionQuantification(MLNaiveQuantifier(CC(cls())), **common)
|
|
yield 'MRQ-PCC', MLRegressionQuantification(MLNaiveQuantifier(PCC(cls())), **common)
|
|
yield 'MRQ-ACC', MLRegressionQuantification(MLNaiveQuantifier(ACC(cls())), **common)
|
|
yield 'MRQ-PACC', MLRegressionQuantification(MLNaiveQuantifier(PACC(cls())), **common)
|
|
yield 'MRQ-ACCit', MLRegressionQuantification(MLNaiveQuantifier(ACC(cls())), **common)
|
|
yield 'MRQ-PACCit', MLRegressionQuantification(MLNaiveQuantifier(PACC(cls())), **common)
|
|
yield 'MRQ-StackCC', MLRegressionQuantification(MLCC(MLStackedClassifier(cls())), **common)
|
|
yield 'MRQ-StackPCC', MLRegressionQuantification(MLPCC(MLStackedClassifier(cls())), **common)
|
|
yield 'MRQ-StackACC', MLRegressionQuantification(MLACC(MLStackedClassifier(cls())), **common)
|
|
yield 'MRQ-StackPACC', MLRegressionQuantification(MLPACC(MLStackedClassifier(cls())), **common)
|
|
yield 'MRQ-StackCC-app', MLRegressionQuantification(MLCC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'MRQ-StackPCC-app', MLRegressionQuantification(MLPCC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'MRQ-StackACC-app', MLRegressionQuantification(MLACC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'MRQ-StackPACC-app', MLRegressionQuantification(MLPACC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'StackMRQ-CC', StackMLRQuantifier(MLNaiveQuantifier(CC(cls())), **common)
|
|
yield 'StackMRQ-PCC', StackMLRQuantifier(MLNaiveQuantifier(PCC(cls())), **common)
|
|
yield 'StackMRQ-ACC', StackMLRQuantifier(MLNaiveQuantifier(ACC(cls())), **common)
|
|
yield 'StackMRQ-PACC', StackMLRQuantifier(MLNaiveQuantifier(PACC(cls())), **common)
|
|
yield 'StackMRQ-StackCC', StackMLRQuantifier(MLCC(MLStackedClassifier(cls())), **common)
|
|
yield 'StackMRQ-StackPCC', StackMLRQuantifier(MLPCC(MLStackedClassifier(cls())), **common)
|
|
yield 'StackMRQ-StackACC', StackMLRQuantifier(MLACC(MLStackedClassifier(cls())), **common)
|
|
yield 'StackMRQ-StackPACC', StackMLRQuantifier(MLPACC(MLStackedClassifier(cls())), **common)
|
|
yield 'StackMRQ-StackCC-app', StackMLRQuantifier(MLCC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'StackMRQ-StackPCC-app', StackMLRQuantifier(MLPCC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'StackMRQ-StackACC-app', StackMLRQuantifier(MLACC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'StackMRQ-StackPACC-app', StackMLRQuantifier(MLPACC(MLStackedClassifier(cls())), protocol='app', **common)
|
|
yield 'MLAdjustedC', MLadjustedCount(OneVsRestClassifier(cls()))
|
|
yield 'MLStackAdjustedC', MLadjustedCount(MLStackedClassifier(cls()))
|
|
# yield 'MLprobAdjustedC', MLprobAdjustedCount(OneVsRestClassifier(calibratedCls()))
|
|
# yield 'MLStackProbAdjustedC', MLprobAdjustedCount(MLStackedClassifier(calibratedCls()))
|
|
|
|
# yield 'MRQ-ChainCC', MLRegressionQuantification(MLCC(ClassifierChain(cls())), **common)
|
|
# yield 'MRQ-ChainPCC', MLRegressionQuantification(MLPCC(ClassifierChain(cls())), **common)
|
|
# yield 'MRQ-ChainACC', MLRegressionQuantification(MLACC(ClassifierChain(cls())), **common)
|
|
# yield 'MRQ-ChainPACC', MLRegressionQuantification(MLPACC(ClassifierChain(cls())), **common)
|
|
# yield 'LSP-CC', MLCC(LabelSpacePartion(cls()))
|
|
# yield 'LSP-ACC', MLACC(LabelSpacePartion(cls()))
|
|
# yield 'TwinSVM-CC', MLCC(MLTwinSVM())
|
|
# yield 'TwinSVM-ACC', MLACC(MLTwinSVM())
|
|
# yield 'MLKNN-CC', MLCC(MLknn())
|
|
#yield 'MLKNN-PCC', MLPCC(MLknn())
|
|
# yield 'MLKNN-ACC', MLACC(MLknn())
|
|
#yield 'MLKNN-PACC', MLPACC(MLknn())
|
|
|
|
|
|
def get_dataset(dataset_name, dopickle=True):
|
|
datadir = f'{qp.util.get_quapy_home()}/pickles'
|
|
datapath = f'{datadir}/{dataset_name}.pkl'
|
|
if dopickle:
|
|
if os.path.exists(datapath):
|
|
print(f'returning pickled object in {datapath}')
|
|
return pickle.load(open(datapath, 'rb'))
|
|
|
|
if dataset_name in SKMULTILEARN_ALL_DATASETS + SKMULTILEARN_RED_DATASETS:
|
|
clean_name = dataset_name.replace('-red','')
|
|
Xtr, ytr, feature_names, label_names = load_dataset(clean_name, 'train')
|
|
Xte, yte, _, _ = load_dataset(clean_name, 'test')
|
|
print(f'n-labels = {len(label_names)}')
|
|
|
|
Xtr = csr_matrix(Xtr)
|
|
Xte = csr_matrix(Xte)
|
|
|
|
ytr = ytr.todense().getA()
|
|
yte = yte.todense().getA()
|
|
|
|
if dataset_name.endswith('-red'):
|
|
TO_SELECT = 10
|
|
nC = ytr.shape[1]
|
|
tr_counts = ytr.sum(axis=0)
|
|
te_counts = yte.sum(axis=0)
|
|
if nC > TO_SELECT:
|
|
Y = ytr.T.dot(ytr) # class-class coincidence matrix
|
|
Y[np.triu_indices(nC)] = 0 # zeroing all duplicates entries and the diagonal
|
|
order_ij = np.argsort(-Y, axis=None)
|
|
selected = set()
|
|
p=0
|
|
while len(selected) < TO_SELECT:
|
|
highest_index = order_ij[p]
|
|
class_i = highest_index // nC
|
|
class_j = highest_index % nC
|
|
# if there is only one class to go, then add the most populated one
|
|
most_populated, least_populated = (class_i, class_j) if tr_counts[class_i] > tr_counts[class_j] else (class_j, class_i)
|
|
if te_counts[most_populated]>0:
|
|
selected.add(most_populated)
|
|
if len(selected) < TO_SELECT:
|
|
if te_counts[least_populated]>0:
|
|
selected.add(least_populated)
|
|
p+=1
|
|
selected = np.asarray(sorted(selected))
|
|
ytr = ytr[:,selected]
|
|
yte = yte[:, selected]
|
|
# else:
|
|
# remove categories without positives in the training or test splits
|
|
# valid_categories = np.logical_and(ytr.sum(axis=0)>5, yte.sum(axis=0)>5)
|
|
# ytr = ytr[:, valid_categories]
|
|
# yte = yte[:, valid_categories]
|
|
|
|
elif dataset_name in TC_DATASETS:
|
|
picklepath = '/home/moreo/word-class-embeddings/pickles'
|
|
data = Dataset.load(dataset_name, pickle_path=f'{picklepath}/{dataset_name}.pickle')
|
|
Xtr, Xte = data.vectorize()
|
|
ytr = data.devel_labelmatrix.todense().getA()
|
|
yte = data.test_labelmatrix.todense().getA()
|
|
|
|
# remove categories with < 50 training or test documents
|
|
# to_keep = np.logical_and(ytr.sum(axis=0)>=50, yte.sum(axis=0)>=50)
|
|
# keep the 10 most populated categories
|
|
to_keep = np.argsort(ytr.sum(axis=0))[-10:]
|
|
ytr = ytr[:, to_keep]
|
|
yte = yte[:, to_keep]
|
|
print(f'num categories = {ytr.shape[1]}')
|
|
|
|
else:
|
|
raise ValueError(f'unknown dataset {dataset_name}')
|
|
|
|
train = MultilabelledCollection(Xtr, ytr)
|
|
test = MultilabelledCollection(Xte, yte)
|
|
|
|
if dopickle:
|
|
os.makedirs(datadir, exist_ok=True)
|
|
pickle.dump((train, test), open(datapath, 'wb'), pickle.HIGHEST_PROTOCOL)
|
|
|
|
return train, test
|
|
|
|
|
|
def already_run(result_path):
|
|
if os.path.exists(result_path):
|
|
print(f'{result_path} already computed. Skipping')
|
|
return True
|
|
return False
|
|
|
|
|
|
def print_info(train, test):
|
|
# print((np.abs(np.corrcoef(ytr, rowvar=False))>0.1).sum())
|
|
# sys.exit(0)
|
|
|
|
print(f'Tr documents {len(train)}')
|
|
print(f'Te documents {len(test)}')
|
|
print(f'#features {train.instances.shape[1]}')
|
|
print(f'#classes {train.labels.shape[1]}')
|
|
|
|
# print(f'Train-prev: {train.prevalence()[:,1]}')
|
|
print(f'Train-counts: {train.counts()}')
|
|
# print(f'Test-prev: {test.prevalence()[:,1]}')
|
|
print(f'Test-counts: {test.counts()}')
|
|
print(f'MLPE: {qp.error.mae(train.prevalence(), test.prevalence()):.5f}')
|
|
|
|
|
|
def save_results(npp_results, app_results, result_path):
|
|
# results are lists of tuples of (true_prevs, estim_prevs)
|
|
# each true_prevs is an ndarray of ndim=2, but the second dimension is constrained
|
|
def _prepare_result_lot(lot_results):
|
|
true_prevs, estim_prevs = lot_results
|
|
return {
|
|
'true_prevs': [true_i[:,0].flatten() for true_i in true_prevs], # removes the constrained prevalence
|
|
'estim_prevs': [estim_i[:,0].flatten() for estim_i in estim_prevs] # removes the constrained prevalence
|
|
}
|
|
results = {
|
|
'npp': _prepare_result_lot(npp_results),
|
|
'app': _prepare_result_lot(app_results),
|
|
}
|
|
pickle.dump(results, open(result_path, 'wb'), pickle.HIGHEST_PROTOCOL)
|
|
|
|
|
|
def load_results(result_path):
|
|
def _unpack_result_lot(lot_result):
|
|
true_prevs = lot_result['true_prevs']
|
|
true_prevs = [np.vstack([true_i, 1 - true_i]).T for true_i in true_prevs] # add the constrained prevalence
|
|
estim_prevs = lot_result['estim_prevs']
|
|
estim_prevs = [np.vstack([estim_i, 1 - estim_i]).T for estim_i in estim_prevs] # add the constrained prevalence
|
|
return true_prevs, estim_prevs
|
|
results = pickle.load(open(result_path, 'rb'))
|
|
results = {
|
|
'npp': _unpack_result_lot(results['npp']),
|
|
'app': _unpack_result_lot(results['app']),
|
|
}
|
|
return results
|
|
# results_npp = _unpack_result_lot(results['npp'])
|
|
# results_app = _unpack_result_lot(results['app'])
|
|
# return results_npp, results_app
|
|
|
|
|
|
def run_experiment(dataset_name, model_name, model):
|
|
result_path = f'{opt.results}/{dataset_name}_{model_name}.pkl'
|
|
if already_run(result_path):
|
|
return
|
|
|
|
print(f'runing experiment {dataset_name} x {model_name}')
|
|
train, test = get_dataset(dataset_name)
|
|
# if train.n_classes>100:
|
|
# return
|
|
|
|
print_info(train, test)
|
|
|
|
model.fit(train)
|
|
|
|
results_npp = ml_natural_prevalence_prediction(model, test, sample_size, repeats=100)
|
|
results_app = ml_artificial_prevalence_prediction(model, test, sample_size, n_prevalences=11, repeats=5)
|
|
save_results(results_npp, results_app, result_path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Experiments for multi-label quantification')
|
|
parser.add_argument('--results', type=str, default='./results', metavar='str',
|
|
help=f'path where to store the results')
|
|
opt = parser.parse_args()
|
|
|
|
os.makedirs(opt.results, exist_ok=True)
|
|
|
|
for datasetname, (modelname,model) in itertools.product(DATASETS, models()):
|
|
run_experiment(datasetname, modelname, model)
|
|
|
|
|
|
|
|
|
|
|