import argparse from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import LogisticRegression import itertools from sklearn.multiclass import OneVsRestClassifier from sklearn.multioutput import ClassifierChain from tqdm import tqdm from skmultilearn.dataset import load_dataset, available_data_sets from scipy.sparse import csr_matrix import quapy as qp from MultiLabel.mlclassification import MLStackedClassifier, LabelSpacePartion, MLTwinSVM, MLknn from MultiLabel.mldata import MultilabelledCollection from MultiLabel.mlquantification import MLNaiveQuantifier, MLCC, MLPCC, MLRegressionQuantification, \ MLACC, \ MLPACC, MLNaiveAggregativeQuantifier, MLMLPE, StackMLRQuantifier, MLadjustedCount, MLprobAdjustedCount from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy import numpy as np from data.dataset import Dataset from mlevaluation import ml_natural_prevalence_prediction, ml_artificial_prevalence_prediction import sys import os import pickle def cls(): # return LinearSVC() return LogisticRegression(max_iter=1000, solver='lbfgs') def calibratedCls(): return CalibratedClassifierCV(cls()) # DEBUG=True # if DEBUG: sample_size = 100 n_samples = 5000 SKMULTILEARN_ALL_DATASETS = sorted(set([x[0] for x in available_data_sets().keys()])) SKMULTILEARN_RED_DATASETS = [x+'-red' for x in SKMULTILEARN_ALL_DATASETS] TC_DATASETS = ['reuters21578', 'jrcall', 'ohsumed', 'rcv1'] DATASETS = TC_DATASETS def models(): yield 'MLPE', MLMLPE() yield 'NaiveCC', MLNaiveAggregativeQuantifier(CC(cls())) yield 'NaivePCC', MLNaiveAggregativeQuantifier(PCC(cls())) yield 'NaivePCCcal', MLNaiveAggregativeQuantifier(PCC(calibratedCls())) yield 'NaiveACC', MLNaiveAggregativeQuantifier(ACC(cls())) yield 'NaivePACC', MLNaiveAggregativeQuantifier(PACC(cls())) yield 'NaivePACCcal', MLNaiveAggregativeQuantifier(PACC(calibratedCls())) yield 'NaiveACCit', MLNaiveAggregativeQuantifier(ACC(cls())) yield 'NaivePACCit', MLNaiveAggregativeQuantifier(PACC(cls())) # yield 'NaiveHDy', MLNaiveAggregativeQuantifier(HDy(cls())) # yield 'NaiveSLD', MLNaiveAggregativeQuantifier(EMQ(calibratedCls())) yield 'StackCC', MLCC(MLStackedClassifier(cls())) yield 'StackPCC', MLPCC(MLStackedClassifier(cls())) yield 'StackPCCcal', MLPCC(MLStackedClassifier(calibratedCls())) yield 'StackACC', MLACC(MLStackedClassifier(cls())) yield 'StackPACC', MLPACC(MLStackedClassifier(cls())) yield 'StackPACCcal', MLPACC(MLStackedClassifier(calibratedCls())) yield 'StackACCit', MLACC(MLStackedClassifier(cls())) yield 'StackPACCit', MLPACC(MLStackedClassifier(cls())) # yield 'ChainCC', MLCC(ClassifierChain(cls(), cv=None)) # yield 'ChainPCC', MLPCC(ClassifierChain(cls(), cv=None)) # yield 'ChainACC', MLACC(ClassifierChain(cls(), cv=None)) # yield 'ChainPACC', MLPACC(ClassifierChain(cls(), cv=None)) common={'sample_size':sample_size, 'n_samples': n_samples, 'norm': True, 'means':False, 'stds':False, 'regression':'svr'} yield 'MRQ-CC', MLRegressionQuantification(MLNaiveQuantifier(CC(cls())), **common) yield 'MRQ-PCC', MLRegressionQuantification(MLNaiveQuantifier(PCC(cls())), **common) yield 'MRQ-ACC', MLRegressionQuantification(MLNaiveQuantifier(ACC(cls())), **common) yield 'MRQ-PACC', MLRegressionQuantification(MLNaiveQuantifier(PACC(cls())), **common) yield 'MRQ-ACCit', MLRegressionQuantification(MLNaiveQuantifier(ACC(cls())), **common) yield 'MRQ-PACCit', MLRegressionQuantification(MLNaiveQuantifier(PACC(cls())), **common) yield 'MRQ-StackCC', MLRegressionQuantification(MLCC(MLStackedClassifier(cls())), **common) yield 'MRQ-StackPCC', MLRegressionQuantification(MLPCC(MLStackedClassifier(cls())), **common) yield 'MRQ-StackACC', MLRegressionQuantification(MLACC(MLStackedClassifier(cls())), **common) yield 'MRQ-StackPACC', MLRegressionQuantification(MLPACC(MLStackedClassifier(cls())), **common) yield 'MRQ-StackCC-app', MLRegressionQuantification(MLCC(MLStackedClassifier(cls())), protocol='app', **common) yield 'MRQ-StackPCC-app', MLRegressionQuantification(MLPCC(MLStackedClassifier(cls())), protocol='app', **common) yield 'MRQ-StackACC-app', MLRegressionQuantification(MLACC(MLStackedClassifier(cls())), protocol='app', **common) yield 'MRQ-StackPACC-app', MLRegressionQuantification(MLPACC(MLStackedClassifier(cls())), protocol='app', **common) yield 'StackMRQ-CC', StackMLRQuantifier(MLNaiveQuantifier(CC(cls())), **common) yield 'StackMRQ-PCC', StackMLRQuantifier(MLNaiveQuantifier(PCC(cls())), **common) yield 'StackMRQ-ACC', StackMLRQuantifier(MLNaiveQuantifier(ACC(cls())), **common) yield 'StackMRQ-PACC', StackMLRQuantifier(MLNaiveQuantifier(PACC(cls())), **common) yield 'StackMRQ-StackCC', StackMLRQuantifier(MLCC(MLStackedClassifier(cls())), **common) yield 'StackMRQ-StackPCC', StackMLRQuantifier(MLPCC(MLStackedClassifier(cls())), **common) yield 'StackMRQ-StackACC', StackMLRQuantifier(MLACC(MLStackedClassifier(cls())), **common) yield 'StackMRQ-StackPACC', StackMLRQuantifier(MLPACC(MLStackedClassifier(cls())), **common) yield 'StackMRQ-StackCC-app', StackMLRQuantifier(MLCC(MLStackedClassifier(cls())), protocol='app', **common) yield 'StackMRQ-StackPCC-app', StackMLRQuantifier(MLPCC(MLStackedClassifier(cls())), protocol='app', **common) yield 'StackMRQ-StackACC-app', StackMLRQuantifier(MLACC(MLStackedClassifier(cls())), protocol='app', **common) yield 'StackMRQ-StackPACC-app', StackMLRQuantifier(MLPACC(MLStackedClassifier(cls())), protocol='app', **common) yield 'MLAdjustedC', MLadjustedCount(OneVsRestClassifier(cls())) yield 'MLStackAdjustedC', MLadjustedCount(MLStackedClassifier(cls())) # yield 'MLprobAdjustedC', MLprobAdjustedCount(OneVsRestClassifier(calibratedCls())) # yield 'MLStackProbAdjustedC', MLprobAdjustedCount(MLStackedClassifier(calibratedCls())) # yield 'MRQ-ChainCC', MLRegressionQuantification(MLCC(ClassifierChain(cls())), **common) # yield 'MRQ-ChainPCC', MLRegressionQuantification(MLPCC(ClassifierChain(cls())), **common) # yield 'MRQ-ChainACC', MLRegressionQuantification(MLACC(ClassifierChain(cls())), **common) # yield 'MRQ-ChainPACC', MLRegressionQuantification(MLPACC(ClassifierChain(cls())), **common) # yield 'LSP-CC', MLCC(LabelSpacePartion(cls())) # yield 'LSP-ACC', MLACC(LabelSpacePartion(cls())) # yield 'TwinSVM-CC', MLCC(MLTwinSVM()) # yield 'TwinSVM-ACC', MLACC(MLTwinSVM()) # yield 'MLKNN-CC', MLCC(MLknn()) #yield 'MLKNN-PCC', MLPCC(MLknn()) # yield 'MLKNN-ACC', MLACC(MLknn()) #yield 'MLKNN-PACC', MLPACC(MLknn()) def get_dataset(dataset_name, dopickle=True): datadir = f'{qp.util.get_quapy_home()}/pickles' datapath = f'{datadir}/{dataset_name}.pkl' if dopickle: if os.path.exists(datapath): print(f'returning pickled object in {datapath}') return pickle.load(open(datapath, 'rb')) if dataset_name in SKMULTILEARN_ALL_DATASETS + SKMULTILEARN_RED_DATASETS: clean_name = dataset_name.replace('-red','') Xtr, ytr, feature_names, label_names = load_dataset(clean_name, 'train') Xte, yte, _, _ = load_dataset(clean_name, 'test') print(f'n-labels = {len(label_names)}') Xtr = csr_matrix(Xtr) Xte = csr_matrix(Xte) ytr = ytr.todense().getA() yte = yte.todense().getA() if dataset_name.endswith('-red'): TO_SELECT = 10 nC = ytr.shape[1] tr_counts = ytr.sum(axis=0) te_counts = yte.sum(axis=0) if nC > TO_SELECT: Y = ytr.T.dot(ytr) # class-class coincidence matrix Y[np.triu_indices(nC)] = 0 # zeroing all duplicates entries and the diagonal order_ij = np.argsort(-Y, axis=None) selected = set() p=0 while len(selected) < TO_SELECT: highest_index = order_ij[p] class_i = highest_index // nC class_j = highest_index % nC # if there is only one class to go, then add the most populated one most_populated, least_populated = (class_i, class_j) if tr_counts[class_i] > tr_counts[class_j] else (class_j, class_i) if te_counts[most_populated]>0: selected.add(most_populated) if len(selected) < TO_SELECT: if te_counts[least_populated]>0: selected.add(least_populated) p+=1 selected = np.asarray(sorted(selected)) ytr = ytr[:,selected] yte = yte[:, selected] # else: # remove categories without positives in the training or test splits # valid_categories = np.logical_and(ytr.sum(axis=0)>5, yte.sum(axis=0)>5) # ytr = ytr[:, valid_categories] # yte = yte[:, valid_categories] elif dataset_name in TC_DATASETS: picklepath = '/home/moreo/word-class-embeddings/pickles' data = Dataset.load(dataset_name, pickle_path=f'{picklepath}/{dataset_name}.pickle') Xtr, Xte = data.vectorize() ytr = data.devel_labelmatrix.todense().getA() yte = data.test_labelmatrix.todense().getA() # remove categories with < 50 training or test documents # to_keep = np.logical_and(ytr.sum(axis=0)>=50, yte.sum(axis=0)>=50) # keep the 10 most populated categories to_keep = np.argsort(ytr.sum(axis=0))[-10:] ytr = ytr[:, to_keep] yte = yte[:, to_keep] print(f'num categories = {ytr.shape[1]}') else: raise ValueError(f'unknown dataset {dataset_name}') train = MultilabelledCollection(Xtr, ytr) test = MultilabelledCollection(Xte, yte) if dopickle: os.makedirs(datadir, exist_ok=True) pickle.dump((train, test), open(datapath, 'wb'), pickle.HIGHEST_PROTOCOL) return train, test def already_run(result_path): if os.path.exists(result_path): print(f'{result_path} already computed. Skipping') return True return False def print_info(train, test): # print((np.abs(np.corrcoef(ytr, rowvar=False))>0.1).sum()) # sys.exit(0) print(f'Tr documents {len(train)}') print(f'Te documents {len(test)}') print(f'#features {train.instances.shape[1]}') print(f'#classes {train.labels.shape[1]}') # print(f'Train-prev: {train.prevalence()[:,1]}') print(f'Train-counts: {train.counts()}') # print(f'Test-prev: {test.prevalence()[:,1]}') print(f'Test-counts: {test.counts()}') print(f'MLPE: {qp.error.mae(train.prevalence(), test.prevalence()):.5f}') def save_results(npp_results, app_results, result_path): # results are lists of tuples of (true_prevs, estim_prevs) # each true_prevs is an ndarray of ndim=2, but the second dimension is constrained def _prepare_result_lot(lot_results): true_prevs, estim_prevs = lot_results return { 'true_prevs': [true_i[:,0].flatten() for true_i in true_prevs], # removes the constrained prevalence 'estim_prevs': [estim_i[:,0].flatten() for estim_i in estim_prevs] # removes the constrained prevalence } results = { 'npp': _prepare_result_lot(npp_results), 'app': _prepare_result_lot(app_results), } pickle.dump(results, open(result_path, 'wb'), pickle.HIGHEST_PROTOCOL) def load_results(result_path): def _unpack_result_lot(lot_result): true_prevs = lot_result['true_prevs'] true_prevs = [np.vstack([true_i, 1 - true_i]).T for true_i in true_prevs] # add the constrained prevalence estim_prevs = lot_result['estim_prevs'] estim_prevs = [np.vstack([estim_i, 1 - estim_i]).T for estim_i in estim_prevs] # add the constrained prevalence return true_prevs, estim_prevs results = pickle.load(open(result_path, 'rb')) results = { 'npp': _unpack_result_lot(results['npp']), 'app': _unpack_result_lot(results['app']), } return results # results_npp = _unpack_result_lot(results['npp']) # results_app = _unpack_result_lot(results['app']) # return results_npp, results_app def run_experiment(dataset_name, model_name, model): result_path = f'{opt.results}/{dataset_name}_{model_name}.pkl' if already_run(result_path): return print(f'runing experiment {dataset_name} x {model_name}') train, test = get_dataset(dataset_name) # if train.n_classes>100: # return print_info(train, test) model.fit(train) results_npp = ml_natural_prevalence_prediction(model, test, sample_size, repeats=100) results_app = ml_artificial_prevalence_prediction(model, test, sample_size, n_prevalences=11, repeats=5) save_results(results_npp, results_app, result_path) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Experiments for multi-label quantification') parser.add_argument('--results', type=str, default='./results', metavar='str', help=f'path where to store the results') opt = parser.parse_args() os.makedirs(opt.results, exist_ok=True) for datasetname, (modelname,model) in itertools.product(DATASETS, models()): run_experiment(datasetname, modelname, model)