1
0
Fork 0
QuaPy/distribution_matching/lequa_experiments.py

66 lines
2.5 KiB
Python

import pickle
import numpy as np
import os
import pandas as pd
from distribution_matching.commons import METHODS, BIN_METHODS, new_method, show_results
import quapy as qp
from quapy.model_selection import GridSearchQ
if __name__ == '__main__':
for task in ['T1A', 'T1B']:
qp.environ['SAMPLE_SIZE'] = qp.datasets.LEQUA2022_SAMPLE_SIZE[task]
qp.environ['N_JOBS'] = -1
for optim in ['mae', 'mrae']:
result_dir = f'results/lequa/{task}/{optim}'
os.makedirs(result_dir, exist_ok=True)
for method in (METHODS if task=='T1B' else BIN_METHODS):
print('Init method', method)
result_path = f'{result_dir}/{method}'
if os.path.exists(result_path+'.csv'):
print(f'file {result_path}.csv already exist; skipping')
continue
with open(result_path+'.csv', 'wt') as csv:
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\n')
dataset = task
train, val_gen, test_gen = qp.datasets.fetch_lequa2022(dataset)
print(f'init {dataset} #instances: {len(train)}')
param_grid, quantifier = new_method(method)
if param_grid is not None:
modsel = GridSearchQ(quantifier, param_grid, protocol=val_gen, refit=False, n_jobs=-1, verbose=1, error=optim)
modsel.fit(train)
print(f'best params {modsel.best_params_}')
print(f'best score {modsel.best_score_}')
pickle.dump(
(modsel.best_params_, modsel.best_score_,),
open(f'{result_path}.hyper.pkl', 'wb'), pickle.HIGHEST_PROTOCOL)
quantifier = modsel.best_model()
else:
print('debug mode... skipping model selection')
quantifier.fit(train)
report = qp.evaluation.evaluation_report(
quantifier, protocol=test_gen, error_metrics=['mae', 'mrae', 'kld'],
verbose=True, verbose_error=optim[1:], n_jobs=-1
)
means = report.mean()
report.to_csv(result_path+'.dataframe')
csv.write(f'{method}\tLeQua-{task}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n')
csv.flush()
print(means)
show_results(result_path)