import pickle import numpy as np import os import pandas as pd from distribution_matching.commons import METHODS, BIN_METHODS, new_method, show_results import quapy as qp from quapy.model_selection import GridSearchQ if __name__ == '__main__': for task in ['T1A', 'T1B']: qp.environ['SAMPLE_SIZE'] = qp.datasets.LEQUA2022_SAMPLE_SIZE[task] qp.environ['N_JOBS'] = -1 for optim in ['mae', 'mrae']: result_dir = f'results/lequa/{task}/{optim}' os.makedirs(result_dir, exist_ok=True) for method in (METHODS if task=='T1B' else BIN_METHODS): print('Init method', method) result_path = f'{result_dir}/{method}' if os.path.exists(result_path+'.csv'): print(f'file {result_path}.csv already exist; skipping') continue with open(result_path+'.csv', 'wt') as csv: csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\n') dataset = task train, val_gen, test_gen = qp.datasets.fetch_lequa2022(dataset) print(f'init {dataset} #instances: {len(train)}') param_grid, quantifier = new_method(method) if param_grid is not None: modsel = GridSearchQ(quantifier, param_grid, protocol=val_gen, refit=False, n_jobs=-1, verbose=1, error=optim) modsel.fit(train) print(f'best params {modsel.best_params_}') print(f'best score {modsel.best_score_}') pickle.dump( (modsel.best_params_, modsel.best_score_,), open(f'{result_path}.hyper.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) quantifier = modsel.best_model() else: print('debug mode... skipping model selection') quantifier.fit(train) report = qp.evaluation.evaluation_report( quantifier, protocol=test_gen, error_metrics=['mae', 'mrae', 'kld'], verbose=True, verbose_error=optim[1:], n_jobs=-1 ) means = report.mean() report.to_csv(result_path+'.dataframe') csv.write(f'{method}\tLeQua-{task}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n') csv.flush() print(means) show_results(result_path)