1
0
Fork 0

preparing some experiments

This commit is contained in:
Alejandro Moreo Fernandez 2021-08-26 17:57:01 +02:00
commit b941c0665e
4 changed files with 191 additions and 97 deletions

View File

@ -1,8 +1,11 @@
import argparse
from sklearn.calibration import CalibratedClassifierCV
from sklearn.linear_model import LogisticRegression
import itertools
from sklearn.multioutput import ClassifierChain
from tqdm import tqdm
from skmultilearn.dataset import load_dataset, available_data_sets
from scipy.sparse import csr_matrix
import quapy as qp
from MultiLabel.mlclassification import MultilabelStackedClassifier
from MultiLabel.mldata import MultilabelledCollection
@ -12,7 +15,10 @@ from MultiLabel.mlquantification import MultilabelNaiveQuantifier, MLCC, MLPCC,
from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy
import numpy as np
from data.dataset import Dataset
from mlevaluation import ml_natural_prevalence_evaluation, ml_artificial_prevalence_evaluation
from mlevaluation import ml_natural_prevalence_prediction, ml_artificial_prevalence_prediction
import sys
import os
import pickle
def cls():
@ -26,7 +32,7 @@ def calibratedCls():
# DEBUG=True
# if DEBUG:
sample_size = 250
sample_size = 100
n_samples = 5000
@ -35,28 +41,29 @@ def models():
yield 'NaivePCC', MultilabelNaiveAggregativeQuantifier(PCC(cls()))
yield 'NaiveACC', MultilabelNaiveAggregativeQuantifier(ACC(cls()))
yield 'NaivePACC', MultilabelNaiveAggregativeQuantifier(PACC(cls()))
yield 'HDy', MultilabelNaiveAggregativeQuantifier(HDy(cls()))
# yield 'EMQ', MultilabelQuantifier(EMQ(calibratedCls()))
yield 'StackCC', MLCC(MultilabelStackedClassifier(cls()))
yield 'StackPCC', MLPCC(MultilabelStackedClassifier(cls()))
yield 'StackACC', MLACC(MultilabelStackedClassifier(cls()))
yield 'StackPACC', MLPACC(MultilabelStackedClassifier(cls()))
# yield 'StackCC', MLCC(MultilabelStackedClassifier(cls()))
# yield 'StackPCC', MLPCC(MultilabelStackedClassifier(cls()))
# yield 'StackACC', MLACC(MultilabelStackedClassifier(cls()))
# yield 'StackPACC', MLPACC(MultilabelStackedClassifier(cls()))
# yield 'ChainCC', MLCC(ClassifierChain(cls(), cv=None, order='random'))
# yield 'ChainPCC', MLPCC(ClassifierChain(cls(), cv=None, order='random'))
# yield 'ChainACC', MLACC(ClassifierChain(cls(), cv=None, order='random'))
# yield 'ChainPACC', MLPACC(ClassifierChain(cls(), cv=None, order='random'))
common={'sample_size':sample_size, 'n_samples': n_samples, 'norm': True, 'means':False, 'stds':False, 'regression':'svr'}
yield 'MRQ-CC', MLRegressionQuantification(MultilabelNaiveQuantifier(CC(cls())), **common)
yield 'MRQ-PCC', MLRegressionQuantification(MultilabelNaiveQuantifier(PCC(cls())), **common)
yield 'MRQ-ACC', MLRegressionQuantification(MultilabelNaiveQuantifier(ACC(cls())), **common)
yield 'MRQ-PACC', MLRegressionQuantification(MultilabelNaiveQuantifier(PACC(cls())), **common)
yield 'MRQ-StackCC', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), **common)
yield 'MRQ-StackPCC', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), **common)
yield 'MRQ-StackACC', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), **common)
yield 'MRQ-StackPACC', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), **common)
yield 'MRQ-StackCC-app', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), protocol='app', **common)
yield 'MRQ-StackPCC-app', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), protocol='app', **common)
yield 'MRQ-StackACC-app', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), protocol='app', **common)
yield 'MRQ-StackPACC-app', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), protocol='app', **common)
# yield 'MRQ-CC', MLRegressionQuantification(MultilabelNaiveQuantifier(CC(cls())), **common)
# yield 'MRQ-PCC', MLRegressionQuantification(MultilabelNaiveQuantifier(PCC(cls())), **common)
# yield 'MRQ-ACC', MLRegressionQuantification(MultilabelNaiveQuantifier(ACC(cls())), **common)
# yield 'MRQ-PACC', MLRegressionQuantification(MultilabelNaiveQuantifier(PACC(cls())), **common)
# yield 'MRQ-StackCC', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), **common)
# yield 'MRQ-StackPCC', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), **common)
# yield 'MRQ-StackACC', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), **common)
# yield 'MRQ-StackPACC', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), **common)
# yield 'MRQ-StackCC-app', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), protocol='app', **common)
# yield 'MRQ-StackPCC-app', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), protocol='app', **common)
# yield 'MRQ-StackACC-app', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), protocol='app', **common)
# yield 'MRQ-StackPACC-app', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), protocol='app', **common)
# yield 'MRQ-ChainCC', MLRegressionQuantification(MLCC(ClassifierChain(cls())), **common)
# yield 'MRQ-ChainPCC', MLRegressionQuantification(MLPCC(ClassifierChain(cls())), **common)
# yield 'MRQ-ChainACC', MLRegressionQuantification(MLACC(ClassifierChain(cls())), **common)
@ -64,43 +71,98 @@ def models():
# dataset = 'reuters21578'
# dataset = 'ohsumed'
dataset = 'jrcall'
# picklepath = '/home/moreo/word-class-embeddings/pickles'
picklepath = './pickles'
data = Dataset.load(dataset, pickle_path=f'{picklepath}/{dataset}.pickle')
Xtr, Xte = data.vectorize()
ytr = data.devel_labelmatrix.todense().getA()
yte = data.test_labelmatrix.todense().getA()
# data = Dataset.load(dataset, pickle_path=f'{picklepath}/{dataset}.pickle')
# Xtr, Xte = data.vectorize()
# ytr = data.devel_labelmatrix.todense().getA()
# yte = data.test_labelmatrix.todense().getA()
# remove categories with < 10 training documents
# to_keep = np.logical_and(ytr.sum(axis=0)>=50, yte.sum(axis=0)>=50)
to_keep = np.argsort(ytr.sum(axis=0))[-10:]
ytr = ytr[:, to_keep]
yte = yte[:, to_keep]
print(f'num categories = {ytr.shape[1]}')
# ytr = ytr[:, to_keep]
# yte = yte[:, to_keep]
# print(f'num categories = {ytr.shape[1]}')
train = MultilabelledCollection(Xtr, ytr)
test = MultilabelledCollection(Xte, yte)
# print(f'Train-prev: {train.prevalence()[:,1]}')
print(f'Train-counts: {train.counts()}')
# print(f'Test-prev: {test.prevalence()[:,1]}')
print(f'Test-counts: {test.counts()}')
print(f'MLPE: {qp.error.mae(train.prevalence(), test.prevalence()):.5f}')
def datasets():
dataset_list = sorted(set([x[0] for x in available_data_sets().keys()]))
for dataset_name in dataset_list:
yield dataset_name
fit_models = {model_name:model.fit(train) for model_name,model in tqdm(models(), 'fitting', total=6)}
print('NPP:')
for model_name, model in fit_models.items():
err = ml_natural_prevalence_evaluation(model, test, sample_size, repeats=100)
print(f'{model_name:10s}\tmae={err:.5f}')
def get_dataset(dataset_name):
Xtr, ytr, feature_names, label_names = load_dataset(dataset_name, 'train')
Xte, yte, _, _ = load_dataset(dataset_name, 'test')
print(f'n-labels = {len(label_names)}')
print('APP:')
for model_name, model in fit_models.items():
err = ml_artificial_prevalence_evaluation(model, test, sample_size, n_prevalences=21, repeats=10)
print(f'{model_name:10s}\tmae={err:.5f}')
Xtr = csr_matrix(Xtr)
Xte = csr_matrix(Xte)
ytr = ytr.todense().getA()
yte = yte.todense().getA()
# remove categories without positives in the training or test splits
valid_categories = np.logical_and(ytr.sum(axis=0)>5, yte.sum(axis=0)>5)
ytr = ytr[:, valid_categories]
yte = yte[:, valid_categories]
train = MultilabelledCollection(Xtr, ytr)
test = MultilabelledCollection(Xte, yte)
return train, test
def already_run(result_path):
if os.path.exists(result_path):
print(f'{result_path} already computed. Skipping')
return True
return False
def print_info(train, test):
# print((np.abs(np.corrcoef(ytr, rowvar=False))>0.1).sum())
# sys.exit(0)
print(f'Tr documents {len(train)}')
print(f'Te documents {len(test)}')
print(f'#features {train.instances.shape[1]}')
print(f'#classes {train.labels.shape[1]}')
# print(f'Train-prev: {train.prevalence()[:,1]}')
print(f'Train-counts: {train.counts()}')
# print(f'Test-prev: {test.prevalence()[:,1]}')
print(f'Test-counts: {test.counts()}')
print(f'MLPE: {qp.error.mae(train.prevalence(), test.prevalence()):.5f}')
def run_experiment(dataset_name, model_name, model):
result_path = f'{opt.results}/{dataset_name}_{model_name}.pkl'
if already_run(result_path):
return
print(f'runing experiment {dataset_name} x {model_name}')
train, test = get_dataset(dataset_name)
print_info(train, test)
model.fit(train)
results = dict()
results['npp'] = ml_natural_prevalence_prediction(model, test, sample_size, repeats=100)
results['app'] = ml_artificial_prevalence_prediction(model, test, sample_size, n_prevalences=21, repeats=10)
pickle.dump(results, open(result_path, 'wb'), pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Experiments for multi-label quantification')
parser.add_argument('--results', type=str, default='./results', metavar='str',
help=f'path where to store the results')
opt = parser.parse_args()
os.makedirs(opt.results, exist_ok=True)
for datasetname, (modelname,model) in itertools.product(datasets(), models()):
run_experiment(datasetname, modelname, model)

View File

@ -9,7 +9,7 @@ from quapy.functional import artificial_prevalence_sampling
class MultilabelledCollection:
def __init__(self, instances, labels):
assert labels.ndim==2, 'data does not seem to be multilabel'
assert labels.ndim==2, f'data does not seem to be multilabel {labels}'
self.instances = instances
self.labels = labels
self.classes_ = np.arange(labels.shape[1])

View File

@ -4,8 +4,42 @@ import numpy as np
import quapy as qp
from MultiLabel.mlquantification import MLAggregativeQuantifier
from mldata import MultilabelledCollection
import itertools
def __check_error(error_metric):
if isinstance(error_metric, str):
error_metric = qp.error.from_name(error_metric)
assert hasattr(error_metric, '__call__'), 'invalid error function'
return error_metric
def _ml_prevalence_predictions(model,
test: MultilabelledCollection,
test_indexes):
predict_batch_fn = _predict_quantification_batch
if isinstance(model, MLAggregativeQuantifier):
test = MultilabelledCollection(model.preclassify(test.instances), test.labels)
predict_batch_fn = _predict_aggregative_batch
args = tuple([model, test, test_indexes])
true_prevs, estim_prevs = predict_batch_fn(args)
return true_prevs, estim_prevs
def ml_natural_prevalence_prediction(model,
test:MultilabelledCollection,
sample_size,
repeats=100,
random_seed=42):
with qp.util.temp_seed(random_seed):
test_indexes = list(test.natural_sampling_index_generator(sample_size=sample_size, repeats=repeats))
return _ml_prevalence_predictions(model, test, test_indexes)
def ml_natural_prevalence_evaluation(model,
test:MultilabelledCollection,
@ -14,23 +48,32 @@ def ml_natural_prevalence_evaluation(model,
error_metric:Union[str,Callable]='mae',
random_seed=42):
if isinstance(error_metric, str):
error_metric = qp.error.from_name(error_metric)
error_metric = __check_error(error_metric)
assert hasattr(error_metric, '__call__'), 'invalid error function'
true_prevs, estim_prevs = ml_natural_prevalence_prediction(model, test, sample_size, repeats, random_seed)
test_batch_fn = _test_quantification_batch
if isinstance(model, MLAggregativeQuantifier):
test = MultilabelledCollection(model.preclassify(test.instances), test.labels)
test_batch_fn = _test_aggregation_batch
with qp.util.temp_seed(random_seed):
test_indexes = list(test.natural_sampling_index_generator(sample_size=sample_size, repeats=repeats))
errs = test_batch_fn(tuple([model, test, test_indexes, error_metric]))
errs = [error_metric(true_prev_i, estim_prev_i) for true_prev_i, estim_prev_i in zip(true_prevs, estim_prevs)]
return np.mean(errs)
def ml_artificial_prevalence_prediction(model,
test:MultilabelledCollection,
sample_size,
n_prevalences=21,
repeats=10,
random_seed=42):
test_indexes = []
with qp.util.temp_seed(random_seed):
for cat in test.classes_:
test_indexes.append(list(test.artificial_sampling_index_generator(sample_size=sample_size,
category=cat,
n_prevalences=n_prevalences,
repeats=repeats)))
test_indexes = list(itertools.chain.from_iterable(test_indexes))
return _ml_prevalence_predictions(model, test, test_indexes)
def ml_artificial_prevalence_evaluation(model,
test:MultilabelledCollection,
sample_size,
@ -39,47 +82,30 @@ def ml_artificial_prevalence_evaluation(model,
error_metric:Union[str,Callable]='mae',
random_seed=42):
if isinstance(error_metric, str):
error_metric = qp.error.from_name(error_metric)
error_metric = __check_error(error_metric)
assert hasattr(error_metric, '__call__'), 'invalid error function'
true_prevs, estim_prevs = ml_artificial_prevalence_prediction(model, test, sample_size, n_prevalences, repeats, random_seed)
test_batch_fn = _test_quantification_batch
if isinstance(model, MLAggregativeQuantifier):
test = MultilabelledCollection(model.preclassify(test.instances), test.labels)
test_batch_fn = _test_aggregation_batch
test_indexes = []
with qp.util.temp_seed(random_seed):
for cat in test.classes_:
test_indexes.append(list(test.artificial_sampling_index_generator(sample_size=sample_size,
category=cat,
n_prevalences=n_prevalences,
repeats=repeats)))
args = [(model, test, indexes, error_metric) for indexes in test_indexes]
macro_errs = qp.util.parallel(test_batch_fn, args, n_jobs=-1)
return np.mean(macro_errs)
errs = [error_metric(true_prev_i, estim_prev_i) for true_prev_i, estim_prev_i in zip(true_prevs, estim_prevs)]
return np.mean(errs)
def _test_quantification_batch(args):
model, test, indexes, error_metric = args
errs = []
def _predict_quantification_batch(args):
model, test, indexes = args
return __predict_batch_fn(args, model.quantify)
def _predict_aggregative_batch(args):
model, test, indexes = args
return __predict_batch_fn(args, model.aggregate)
def __predict_batch_fn(args, quant_fn):
model, test, indexes = args
trues, estims = [], []
for index in indexes:
sample = test.sampling_from_index(index)
estim_prevs = model.quantify(sample.instances)
true_prevs = sample.prevalence()
errs.append(error_metric(true_prevs, estim_prevs))
return errs
estims.append(quant_fn(sample.instances))
trues.append(sample.prevalence())
return trues, estims
def _test_aggregation_batch(args):
model, preclassified_test, indexes, error_metric = args
errs = []
for index in indexes:
sample = preclassified_test.sampling_from_index(index)
estim_prevs = model.aggregate(sample.instances)
true_prevs = sample.prevalence()
errs.append(error_metric(true_prevs, estim_prevs))
return errs

View File

@ -186,6 +186,7 @@ class MLRegressionQuantification:
# self.norm = StandardScaler()
self.means = means
self.stds = stds
# self.covs = covs
def _prepare_arrays(self, Xs, ys, samples_mean, samples_std):
Xs = np.asarray(Xs)
@ -196,6 +197,8 @@ class MLRegressionQuantification:
if self.stds:
samples_std = np.asarray(samples_std)
Xs = np.hstack([Xs, samples_std])
# if self.covs:
return Xs, ys
def generate_samples_npp(self, val):
@ -257,3 +260,6 @@ class MLRegressionQuantification:
adjusted = adjusted.flatten()
neg_prevs = 1-adjusted
return np.asarray([neg_prevs, adjusted]).T
# class