forked from moreo/QuaPy
169 lines
7.0 KiB
Python
169 lines
7.0 KiB
Python
import argparse
|
|
from sklearn.calibration import CalibratedClassifierCV
|
|
from sklearn.linear_model import LogisticRegression
|
|
import itertools
|
|
from sklearn.multioutput import ClassifierChain
|
|
from tqdm import tqdm
|
|
from skmultilearn.dataset import load_dataset, available_data_sets
|
|
from scipy.sparse import csr_matrix
|
|
import quapy as qp
|
|
from MultiLabel.mlclassification import MultilabelStackedClassifier
|
|
from MultiLabel.mldata import MultilabelledCollection
|
|
from MultiLabel.mlquantification import MultilabelNaiveQuantifier, MLCC, MLPCC, MLRegressionQuantification, \
|
|
MLACC, \
|
|
MLPACC, MultilabelNaiveAggregativeQuantifier
|
|
from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy
|
|
import numpy as np
|
|
from data.dataset import Dataset
|
|
from mlevaluation import ml_natural_prevalence_prediction, ml_artificial_prevalence_prediction
|
|
import sys
|
|
import os
|
|
import pickle
|
|
|
|
|
|
def cls():
|
|
# return LinearSVC()
|
|
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
|
|
|
|
|
|
def calibratedCls():
|
|
return CalibratedClassifierCV(cls())
|
|
|
|
# DEBUG=True
|
|
|
|
# if DEBUG:
|
|
sample_size = 100
|
|
n_samples = 5000
|
|
|
|
|
|
def models():
|
|
yield 'NaiveCC', MultilabelNaiveAggregativeQuantifier(CC(cls()))
|
|
yield 'NaivePCC', MultilabelNaiveAggregativeQuantifier(PCC(cls()))
|
|
yield 'NaiveACC', MultilabelNaiveAggregativeQuantifier(ACC(cls()))
|
|
yield 'NaivePACC', MultilabelNaiveAggregativeQuantifier(PACC(cls()))
|
|
yield 'HDy', MultilabelNaiveAggregativeQuantifier(HDy(cls()))
|
|
# yield 'EMQ', MultilabelQuantifier(EMQ(calibratedCls()))
|
|
# yield 'StackCC', MLCC(MultilabelStackedClassifier(cls()))
|
|
# yield 'StackPCC', MLPCC(MultilabelStackedClassifier(cls()))
|
|
# yield 'StackACC', MLACC(MultilabelStackedClassifier(cls()))
|
|
# yield 'StackPACC', MLPACC(MultilabelStackedClassifier(cls()))
|
|
# yield 'ChainCC', MLCC(ClassifierChain(cls(), cv=None, order='random'))
|
|
# yield 'ChainPCC', MLPCC(ClassifierChain(cls(), cv=None, order='random'))
|
|
# yield 'ChainACC', MLACC(ClassifierChain(cls(), cv=None, order='random'))
|
|
# yield 'ChainPACC', MLPACC(ClassifierChain(cls(), cv=None, order='random'))
|
|
common={'sample_size':sample_size, 'n_samples': n_samples, 'norm': True, 'means':False, 'stds':False, 'regression':'svr'}
|
|
# yield 'MRQ-CC', MLRegressionQuantification(MultilabelNaiveQuantifier(CC(cls())), **common)
|
|
# yield 'MRQ-PCC', MLRegressionQuantification(MultilabelNaiveQuantifier(PCC(cls())), **common)
|
|
# yield 'MRQ-ACC', MLRegressionQuantification(MultilabelNaiveQuantifier(ACC(cls())), **common)
|
|
# yield 'MRQ-PACC', MLRegressionQuantification(MultilabelNaiveQuantifier(PACC(cls())), **common)
|
|
# yield 'MRQ-StackCC', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), **common)
|
|
# yield 'MRQ-StackPCC', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), **common)
|
|
# yield 'MRQ-StackACC', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), **common)
|
|
# yield 'MRQ-StackPACC', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), **common)
|
|
# yield 'MRQ-StackCC-app', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), protocol='app', **common)
|
|
# yield 'MRQ-StackPCC-app', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), protocol='app', **common)
|
|
# yield 'MRQ-StackACC-app', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), protocol='app', **common)
|
|
# yield 'MRQ-StackPACC-app', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), protocol='app', **common)
|
|
# yield 'MRQ-ChainCC', MLRegressionQuantification(MLCC(ClassifierChain(cls())), **common)
|
|
# yield 'MRQ-ChainPCC', MLRegressionQuantification(MLPCC(ClassifierChain(cls())), **common)
|
|
# yield 'MRQ-ChainACC', MLRegressionQuantification(MLACC(ClassifierChain(cls())), **common)
|
|
# yield 'MRQ-ChainPACC', MLRegressionQuantification(MLPACC(ClassifierChain(cls())), **common)
|
|
|
|
|
|
# dataset = 'reuters21578'
|
|
# picklepath = '/home/moreo/word-class-embeddings/pickles'
|
|
# data = Dataset.load(dataset, pickle_path=f'{picklepath}/{dataset}.pickle')
|
|
# Xtr, Xte = data.vectorize()
|
|
# ytr = data.devel_labelmatrix.todense().getA()
|
|
# yte = data.test_labelmatrix.todense().getA()
|
|
|
|
# remove categories with < 10 training documents
|
|
# to_keep = np.logical_and(ytr.sum(axis=0)>=50, yte.sum(axis=0)>=50)
|
|
# ytr = ytr[:, to_keep]
|
|
# yte = yte[:, to_keep]
|
|
# print(f'num categories = {ytr.shape[1]}')
|
|
|
|
|
|
def datasets():
|
|
dataset_list = sorted(set([x[0] for x in available_data_sets().keys()]))
|
|
for dataset_name in dataset_list:
|
|
yield dataset_name
|
|
|
|
|
|
def get_dataset(dataset_name):
|
|
Xtr, ytr, feature_names, label_names = load_dataset(dataset_name, 'train')
|
|
Xte, yte, _, _ = load_dataset(dataset_name, 'test')
|
|
print(f'n-labels = {len(label_names)}')
|
|
|
|
Xtr = csr_matrix(Xtr)
|
|
Xte = csr_matrix(Xte)
|
|
|
|
ytr = ytr.todense().getA()
|
|
yte = yte.todense().getA()
|
|
|
|
# remove categories without positives in the training or test splits
|
|
valid_categories = np.logical_and(ytr.sum(axis=0)>5, yte.sum(axis=0)>5)
|
|
ytr = ytr[:, valid_categories]
|
|
yte = yte[:, valid_categories]
|
|
|
|
train = MultilabelledCollection(Xtr, ytr)
|
|
test = MultilabelledCollection(Xte, yte)
|
|
|
|
return train, test
|
|
|
|
|
|
def already_run(result_path):
|
|
if os.path.exists(result_path):
|
|
print(f'{result_path} already computed. Skipping')
|
|
return True
|
|
return False
|
|
|
|
|
|
def print_info(train, test):
|
|
# print((np.abs(np.corrcoef(ytr, rowvar=False))>0.1).sum())
|
|
# sys.exit(0)
|
|
|
|
print(f'Tr documents {len(train)}')
|
|
print(f'Te documents {len(test)}')
|
|
print(f'#features {train.instances.shape[1]}')
|
|
print(f'#classes {train.labels.shape[1]}')
|
|
|
|
# print(f'Train-prev: {train.prevalence()[:,1]}')
|
|
print(f'Train-counts: {train.counts()}')
|
|
# print(f'Test-prev: {test.prevalence()[:,1]}')
|
|
print(f'Test-counts: {test.counts()}')
|
|
print(f'MLPE: {qp.error.mae(train.prevalence(), test.prevalence()):.5f}')
|
|
|
|
|
|
def run_experiment(dataset_name, model_name, model):
|
|
result_path = f'{opt.results}/{dataset_name}_{model_name}.pkl'
|
|
if already_run(result_path):
|
|
return
|
|
|
|
print(f'runing experiment {dataset_name} x {model_name}')
|
|
train, test = get_dataset(dataset_name)
|
|
|
|
print_info(train, test)
|
|
|
|
model.fit(train)
|
|
|
|
results = dict()
|
|
results['npp'] = ml_natural_prevalence_prediction(model, test, sample_size, repeats=100)
|
|
results['app'] = ml_artificial_prevalence_prediction(model, test, sample_size, n_prevalences=21, repeats=10)
|
|
pickle.dump(results, open(result_path, 'wb'), pickle.HIGHEST_PROTOCOL)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Experiments for multi-label quantification')
|
|
parser.add_argument('--results', type=str, default='./results', metavar='str',
|
|
help=f'path where to store the results')
|
|
opt = parser.parse_args()
|
|
|
|
os.makedirs(opt.results, exist_ok=True)
|
|
|
|
for datasetname, (modelname,model) in itertools.product(datasets(), models()):
|
|
run_experiment(datasetname, modelname, model)
|
|
|
|
|
|
|