482 lines
17 KiB
Python
482 lines
17 KiB
Python
import itertools
|
|
import math
|
|
import os
|
|
from copy import deepcopy
|
|
from time import time
|
|
from typing import Callable, Union
|
|
|
|
import numpy as np
|
|
from joblib import Parallel
|
|
from quapy.data import LabelledCollection
|
|
from quapy.protocol import (
|
|
AbstractProtocol,
|
|
OnLabelledCollectionProtocol,
|
|
)
|
|
|
|
import quacc as qc
|
|
import quacc.error
|
|
from quacc.data import ExtendedCollection
|
|
from quacc.evaluation.evaluate import evaluate
|
|
from quacc.logger import logger
|
|
from quacc.method.base import (
|
|
BaseAccuracyEstimator,
|
|
)
|
|
|
|
|
|
class GridSearchAE(BaseAccuracyEstimator):
|
|
def __init__(
|
|
self,
|
|
model: BaseAccuracyEstimator,
|
|
param_grid: dict,
|
|
protocol: AbstractProtocol,
|
|
error: Union[Callable, str] = qc.error.maccd,
|
|
refit=True,
|
|
# timeout=-1,
|
|
n_jobs=None,
|
|
verbose=False,
|
|
):
|
|
self.model = model
|
|
self.param_grid = self.__normalize_params(param_grid)
|
|
self.protocol = protocol
|
|
self.refit = refit
|
|
# self.timeout = timeout
|
|
self.n_jobs = qc._get_njobs(n_jobs)
|
|
self.verbose = verbose
|
|
self.__check_error(error)
|
|
assert isinstance(protocol, AbstractProtocol), "unknown protocol"
|
|
|
|
def _sout(self, msg, level=0):
|
|
if level > 0 or self.verbose:
|
|
print(f"[{self.__class__.__name__}@{self.model.__class__.__name__}]: {msg}")
|
|
|
|
def __normalize_params(self, params):
|
|
__remap = {}
|
|
for key in params.keys():
|
|
k, delim, sub_key = key.partition("__")
|
|
if delim and k == "q":
|
|
__remap[key] = f"quantifier__{sub_key}"
|
|
|
|
return {(__remap[k] if k in __remap else k): v for k, v in params.items()}
|
|
|
|
def __check_error(self, error):
|
|
if error in qc.error.ACCURACY_ERROR:
|
|
self.error = error
|
|
elif isinstance(error, str):
|
|
self.error = qc.error.from_name(error)
|
|
elif hasattr(error, "__call__"):
|
|
self.error = error
|
|
else:
|
|
raise ValueError(
|
|
f"unexpected error type; must either be a callable function or a str representing\n"
|
|
f"the name of an error function in {qc.error.ACCURACY_ERROR_NAMES}"
|
|
)
|
|
|
|
def fit(self, training: LabelledCollection):
|
|
"""Learning routine. Fits methods with all combinations of hyperparameters and selects the one minimizing
|
|
the error metric.
|
|
|
|
:param training: the training set on which to optimize the hyperparameters
|
|
:return: self
|
|
"""
|
|
params_keys = list(self.param_grid.keys())
|
|
params_values = list(self.param_grid.values())
|
|
|
|
protocol = self.protocol
|
|
|
|
self.param_scores_ = {}
|
|
self.best_score_ = None
|
|
|
|
tinit = time()
|
|
|
|
hyper = [
|
|
dict(zip(params_keys, val)) for val in itertools.product(*params_values)
|
|
]
|
|
|
|
self._sout(f"starting model selection with {self.n_jobs =}")
|
|
# self._sout("starting model selection")
|
|
|
|
# scores = [self.__params_eval((params, training)) for params in hyper]
|
|
scores = self._select_scores(hyper, training)
|
|
|
|
for params, score, model in scores:
|
|
if score is not None:
|
|
if self.best_score_ is None or score < self.best_score_:
|
|
self.best_score_ = score
|
|
self.best_params_ = params
|
|
self.best_model_ = model
|
|
self.param_scores_[str(params)] = score
|
|
else:
|
|
self.param_scores_[str(params)] = "timeout"
|
|
|
|
tend = time() - tinit
|
|
|
|
if self.best_score_ is None:
|
|
raise TimeoutError("no combination of hyperparameters seem to work")
|
|
|
|
self._sout(
|
|
f"optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) "
|
|
f"[took {tend:.4f}s]",
|
|
level=1,
|
|
)
|
|
|
|
# log = Logger.logger()
|
|
log = logger()
|
|
log.debug(
|
|
f"[{self.model.__class__.__name__}] "
|
|
f"optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) "
|
|
f"[took {tend:.4f}s]"
|
|
)
|
|
|
|
if self.refit:
|
|
if isinstance(protocol, OnLabelledCollectionProtocol):
|
|
self._sout("refitting on the whole development set")
|
|
self.best_model_.fit(training + protocol.get_labelled_collection())
|
|
else:
|
|
raise RuntimeWarning(
|
|
f'"refit" was requested, but the protocol does not '
|
|
f"implement the {OnLabelledCollectionProtocol.__name__} interface"
|
|
)
|
|
|
|
return self
|
|
|
|
def _select_scores(self, hyper, training):
|
|
return qc.utils.parallel(
|
|
self._params_eval,
|
|
[(params, training) for params in hyper],
|
|
n_jobs=self.n_jobs,
|
|
verbose=1,
|
|
)
|
|
|
|
def _params_eval(self, params, training, protocol=None):
|
|
protocol = self.protocol if protocol is None else protocol
|
|
error = self.error
|
|
|
|
# if self.timeout > 0:
|
|
|
|
# def handler(signum, frame):
|
|
# raise TimeoutError()
|
|
|
|
# signal.signal(signal.SIGALRM, handler)
|
|
|
|
tinit = time()
|
|
|
|
# if self.timeout > 0:
|
|
# signal.alarm(self.timeout)
|
|
|
|
try:
|
|
model = deepcopy(self.model)
|
|
# overrides default parameters with the parameters being explored at this iteration
|
|
model.set_params(**params)
|
|
# print({k: v for k, v in model.get_params().items() if k in params})
|
|
model.fit(training)
|
|
score = evaluate(model, protocol=protocol, error_metric=error)
|
|
|
|
ttime = time() - tinit
|
|
self._sout(
|
|
f"hyperparams={params}\t got score {score:.5f} [took {ttime:.4f}s]",
|
|
)
|
|
|
|
# if self.timeout > 0:
|
|
# signal.alarm(0)
|
|
# except TimeoutError:
|
|
# self._sout(f"timeout ({self.timeout}s) reached for config {params}")
|
|
# score = None
|
|
except ValueError as e:
|
|
self._sout(
|
|
f"the combination of hyperparameters {params} is invalid. Exception: {e}",
|
|
level=1,
|
|
)
|
|
score = None
|
|
# raise e
|
|
except Exception as e:
|
|
self._sout(
|
|
f"something went wrong for config {params}; skipping:"
|
|
f"\tException: {e}",
|
|
level=1,
|
|
)
|
|
# raise e
|
|
score = None
|
|
|
|
return params, score, model
|
|
|
|
def extend(
|
|
self, coll: LabelledCollection, pred_proba=None, prefit=False
|
|
) -> ExtendedCollection:
|
|
assert hasattr(self, "best_model_"), "quantify called before fit"
|
|
return self.best_model().extend(coll, pred_proba=pred_proba, prefit=prefit)
|
|
|
|
def estimate(self, instances):
|
|
"""Estimate class prevalence values using the best model found after calling the :meth:`fit` method.
|
|
|
|
:param instances: sample contanining the instances
|
|
:return: a ndarray of shape `(n_classes)` with class prevalence estimates as according to the best model found
|
|
by the model selection process.
|
|
"""
|
|
|
|
assert hasattr(self, "best_model_"), "estimate called before fit"
|
|
return self.best_model().estimate(instances)
|
|
|
|
def set_params(self, **parameters):
|
|
"""Sets the hyper-parameters to explore.
|
|
|
|
:param parameters: a dictionary with keys the parameter names and values the list of values to explore
|
|
"""
|
|
self.param_grid = parameters
|
|
|
|
def get_params(self, deep=True):
|
|
"""Returns the dictionary of hyper-parameters to explore (`param_grid`)
|
|
|
|
:param deep: Unused
|
|
:return: the dictionary `param_grid`
|
|
"""
|
|
return self.param_grid
|
|
|
|
def best_model(self):
|
|
"""
|
|
Returns the best model found after calling the :meth:`fit` method, i.e., the one trained on the combination
|
|
of hyper-parameters that minimized the error function.
|
|
|
|
:return: a trained quantifier
|
|
"""
|
|
if hasattr(self, "best_model_"):
|
|
return self.best_model_
|
|
raise ValueError("best_model called before fit")
|
|
|
|
def best_score(self):
|
|
if hasattr(self, "best_score_"):
|
|
return self.best_score_
|
|
raise ValueError("best_score called before fit")
|
|
|
|
|
|
class RandomizedSearchAE(GridSearchAE):
|
|
ERR_THRESHOLD = 1e-4
|
|
MAX_ITER_IMPROV = 3
|
|
|
|
def _select_scores(self, hyper, training: LabelledCollection):
|
|
log = logger()
|
|
hyper = np.array(hyper)
|
|
rand_index = np.random.choice(
|
|
np.arange(len(hyper)), size=len(hyper), replace=False
|
|
)
|
|
_n_jobs = os.cpu_count() + 1 + self.n_jobs if self.n_jobs < 0 else self.n_jobs
|
|
batch_size = _n_jobs
|
|
|
|
log.debug(f"{batch_size = }")
|
|
rand_index = list(
|
|
rand_index[: (len(hyper) // batch_size) * batch_size].reshape(
|
|
(len(hyper) // batch_size, batch_size)
|
|
)
|
|
) + [rand_index[(len(hyper) // batch_size) * batch_size :]]
|
|
scores = []
|
|
best_score, iter_from_improv = np.inf, 0
|
|
with Parallel(n_jobs=self.n_jobs) as parallel:
|
|
for i, ri in enumerate(rand_index):
|
|
tstart = time()
|
|
_iter_scores = qc.utils.parallel(
|
|
self._params_eval,
|
|
[(params, training) for params in hyper[ri]],
|
|
parallel=parallel,
|
|
)
|
|
_best_iter_score = np.min(
|
|
[s for _, s, _ in _iter_scores if s is not None]
|
|
)
|
|
|
|
log.debug(
|
|
f"[iter {i}] best score = {_best_iter_score:.8f} [took {time() - tstart:.3f}s]"
|
|
)
|
|
scores += _iter_scores
|
|
|
|
_check, best_score, iter_from_improv = self.__stop_condition(
|
|
_best_iter_score, best_score, iter_from_improv
|
|
)
|
|
if _check:
|
|
break
|
|
|
|
return scores
|
|
|
|
def __stop_condition(self, best_iter_score, best_score, iter_from_improv):
|
|
if best_iter_score < best_score:
|
|
_improv = best_score - best_iter_score
|
|
best_score = best_iter_score
|
|
else:
|
|
_improv = 0
|
|
|
|
if _improv > self.ERR_THRESHOLD:
|
|
iter_from_improv = 0
|
|
else:
|
|
iter_from_improv += 1
|
|
|
|
return iter_from_improv > self.MAX_ITER_IMPROV, best_score, iter_from_improv
|
|
|
|
|
|
class HalvingSearchAE(GridSearchAE):
|
|
def _select_scores(self, hyper, training: LabelledCollection):
|
|
log = logger()
|
|
hyper = np.array(hyper)
|
|
|
|
threshold = 22
|
|
factor = 3
|
|
n_steps = math.ceil(math.log(len(hyper) / threshold, factor))
|
|
steps = np.logspace(n_steps, 0, base=1.0 / factor, num=n_steps + 1)
|
|
with Parallel(n_jobs=self.n_jobs, verbose=1) as parallel:
|
|
for _step in steps:
|
|
tstart = time()
|
|
_training, _ = (
|
|
training.split_stratified(train_prop=_step)
|
|
if _step < 1.0
|
|
else (training, None)
|
|
)
|
|
|
|
results = qc.utils.parallel(
|
|
self._params_eval,
|
|
[(params, _training) for params in hyper],
|
|
parallel=parallel,
|
|
)
|
|
scores = [(1.0 if s is None else s) for _, s, _ in results]
|
|
res_hyper = np.array([h for h, _, _ in results], dtype="object")
|
|
sorted_scores_idx = np.argsort(scores)
|
|
best_score = scores[sorted_scores_idx[0]]
|
|
hyper = res_hyper[
|
|
sorted_scores_idx[: round(len(res_hyper) * (1.0 / factor))]
|
|
]
|
|
|
|
log.debug(
|
|
f"[step {_step}] best score = {best_score:.8f} [took {time() - tstart:.3f}s]"
|
|
)
|
|
|
|
return results
|
|
|
|
|
|
class SpiderSearchAE(GridSearchAE):
|
|
def __init__(
|
|
self,
|
|
model: BaseAccuracyEstimator,
|
|
param_grid: dict,
|
|
protocol: AbstractProtocol,
|
|
error: Union[Callable, str] = qc.error.maccd,
|
|
refit=True,
|
|
n_jobs=None,
|
|
verbose=False,
|
|
err_threshold=1e-4,
|
|
max_iter_improv=0,
|
|
pd_th_min=1,
|
|
best_width=2,
|
|
):
|
|
super().__init__(
|
|
model=model,
|
|
param_grid=param_grid,
|
|
protocol=protocol,
|
|
error=error,
|
|
refit=refit,
|
|
n_jobs=n_jobs,
|
|
verbose=verbose,
|
|
)
|
|
self.err_threshold = err_threshold
|
|
self.max_iter_improv = max_iter_improv
|
|
self.pd_th_min = pd_th_min
|
|
self.best_width = best_width
|
|
|
|
def _select_scores(self, hyper, training: LabelledCollection):
|
|
log = logger()
|
|
hyper = np.array(hyper)
|
|
_n_jobs = os.cpu_count() + 1 + self.n_jobs if self.n_jobs < 0 else self.n_jobs
|
|
batch_size = _n_jobs
|
|
|
|
rand_index = np.arange(len(hyper))
|
|
np.random.shuffle(rand_index)
|
|
rand_index = rand_index[:batch_size]
|
|
remaining_index = np.setdiff1d(np.arange(len(hyper)), rand_index)
|
|
_hyper, _hyper_remaining = hyper[rand_index], hyper[remaining_index]
|
|
|
|
scores = []
|
|
best_score, last_best, iter_from_improv = np.inf, np.inf, 0
|
|
with Parallel(n_jobs=self.n_jobs, verbose=1) as parallel:
|
|
while len(_hyper) > 0:
|
|
# log.debug(f"{len(_hyper_remaining)=}")
|
|
tstart = time()
|
|
_iter_scores = qc.utils.parallel(
|
|
self._params_eval,
|
|
[(params, training) for params in _hyper],
|
|
parallel=parallel,
|
|
)
|
|
|
|
# if all scores are None, select a new random batch
|
|
if all([s[1] is None for s in _iter_scores]):
|
|
rand_index = np.arange(len(_hyper_remaining))
|
|
np.random.shuffle(rand_index)
|
|
rand_index = rand_index[:batch_size]
|
|
remaining_index = np.setdiff1d(
|
|
np.arange(len(_hyper_remaining)), rand_index
|
|
)
|
|
_hyper = _hyper_remaining[rand_index]
|
|
_hyper_remaining = _hyper_remaining[remaining_index]
|
|
continue
|
|
|
|
_sorted_idx = np.argsort(
|
|
[1.0 if s is None else s for _, s, _ in _iter_scores]
|
|
)
|
|
_sorted_scores = np.array(_iter_scores, dtype="object")[_sorted_idx]
|
|
_best_iter_params = np.array(
|
|
[p for p, _, _ in _sorted_scores], dtype="object"
|
|
)
|
|
_best_iter_scores = np.array(
|
|
[s for _, s, _ in _sorted_scores], dtype="object"
|
|
)
|
|
|
|
for i, (_score, _param) in enumerate(
|
|
zip(
|
|
_best_iter_scores[: self.best_width],
|
|
_best_iter_params[: self.best_width],
|
|
)
|
|
):
|
|
log.debug(
|
|
f"[size={len(_hyper)},place={i+1}] best score = {_score:.8f}; "
|
|
f"best param = {_param} [took {time() - tstart:.3f}s]"
|
|
)
|
|
scores += _iter_scores
|
|
|
|
_improv = best_score - _best_iter_scores[0]
|
|
_improv_last = last_best - _best_iter_scores[0]
|
|
if _improv > self.err_threshold:
|
|
iter_from_improv = 0
|
|
best_score = _best_iter_scores[0]
|
|
elif _improv_last < 0:
|
|
iter_from_improv += 1
|
|
|
|
last_best = _best_iter_scores[0]
|
|
|
|
if iter_from_improv > self.max_iter_improv:
|
|
break
|
|
|
|
_new_hyper = np.array([], dtype="object")
|
|
for _base_param in _best_iter_params[: self.best_width]:
|
|
_rem_pds = np.array(
|
|
[
|
|
self.__param_distance(_base_param, h)
|
|
for h in _hyper_remaining
|
|
]
|
|
)
|
|
_rem_pd_sort_idx = np.argsort(_rem_pds)
|
|
# _min_pd = np.min(_rem_pds)
|
|
_min_pd_len = (_rem_pds <= self.pd_th_min).nonzero()[0].shape[0]
|
|
_new_hyper_idx = _rem_pd_sort_idx[:_min_pd_len]
|
|
_hyper_rem_idx = np.setdiff1d(
|
|
np.arange(len(_hyper_remaining)), _new_hyper_idx
|
|
)
|
|
_new_hyper = np.concatenate(
|
|
[_new_hyper, _hyper_remaining[_new_hyper_idx]]
|
|
)
|
|
_hyper_remaining = _hyper_remaining[_hyper_rem_idx]
|
|
_hyper = _new_hyper
|
|
|
|
return scores
|
|
|
|
def __param_distance(self, param1, param2):
|
|
score = 0
|
|
for k, v in param1.items():
|
|
if param2[k] != v:
|
|
score += 1
|
|
|
|
return score
|
|
|