import itertools import math import os from copy import deepcopy from time import time from typing import Callable, Union import numpy as np from joblib import Parallel from quapy.data import LabelledCollection from quapy.protocol import ( AbstractProtocol, OnLabelledCollectionProtocol, ) import quacc as qc import quacc.error from quacc.data import ExtendedCollection from quacc.evaluation.evaluate import evaluate from quacc.logger import logger from quacc.method.base import ( BaseAccuracyEstimator, ) class GridSearchAE(BaseAccuracyEstimator): def __init__( self, model: BaseAccuracyEstimator, param_grid: dict, protocol: AbstractProtocol, error: Union[Callable, str] = qc.error.maccd, refit=True, # timeout=-1, n_jobs=None, verbose=False, ): self.model = model self.param_grid = self.__normalize_params(param_grid) self.protocol = protocol self.refit = refit # self.timeout = timeout self.n_jobs = qc._get_njobs(n_jobs) self.verbose = verbose self.__check_error(error) assert isinstance(protocol, AbstractProtocol), "unknown protocol" def _sout(self, msg, level=0): if level > 0 or self.verbose: print(f"[{self.__class__.__name__}@{self.model.__class__.__name__}]: {msg}") def __normalize_params(self, params): __remap = {} for key in params.keys(): k, delim, sub_key = key.partition("__") if delim and k == "q": __remap[key] = f"quantifier__{sub_key}" return {(__remap[k] if k in __remap else k): v for k, v in params.items()} def __check_error(self, error): if error in qc.error.ACCURACY_ERROR: self.error = error elif isinstance(error, str): self.error = qc.error.from_name(error) elif hasattr(error, "__call__"): self.error = error else: raise ValueError( f"unexpected error type; must either be a callable function or a str representing\n" f"the name of an error function in {qc.error.ACCURACY_ERROR_NAMES}" ) def fit(self, training: LabelledCollection): """Learning routine. Fits methods with all combinations of hyperparameters and selects the one minimizing the error metric. :param training: the training set on which to optimize the hyperparameters :return: self """ params_keys = list(self.param_grid.keys()) params_values = list(self.param_grid.values()) protocol = self.protocol self.param_scores_ = {} self.best_score_ = None tinit = time() hyper = [ dict(zip(params_keys, val)) for val in itertools.product(*params_values) ] self._sout(f"starting model selection with {self.n_jobs =}") # self._sout("starting model selection") # scores = [self.__params_eval((params, training)) for params in hyper] scores = self._select_scores(hyper, training) for params, score, model in scores: if score is not None: if self.best_score_ is None or score < self.best_score_: self.best_score_ = score self.best_params_ = params self.best_model_ = model self.param_scores_[str(params)] = score else: self.param_scores_[str(params)] = "timeout" tend = time() - tinit if self.best_score_ is None: raise TimeoutError("no combination of hyperparameters seem to work") self._sout( f"optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) " f"[took {tend:.4f}s]", level=1, ) # log = Logger.logger() log = logger() log.debug( f"[{self.model.__class__.__name__}] " f"optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) " f"[took {tend:.4f}s]" ) if self.refit: if isinstance(protocol, OnLabelledCollectionProtocol): self._sout("refitting on the whole development set") self.best_model_.fit(training + protocol.get_labelled_collection()) else: raise RuntimeWarning( f'"refit" was requested, but the protocol does not ' f"implement the {OnLabelledCollectionProtocol.__name__} interface" ) return self def _select_scores(self, hyper, training): return qc.utils.parallel( self._params_eval, [(params, training) for params in hyper], n_jobs=self.n_jobs, verbose=1, ) def _params_eval(self, params, training, protocol=None): protocol = self.protocol if protocol is None else protocol error = self.error # if self.timeout > 0: # def handler(signum, frame): # raise TimeoutError() # signal.signal(signal.SIGALRM, handler) tinit = time() # if self.timeout > 0: # signal.alarm(self.timeout) try: model = deepcopy(self.model) # overrides default parameters with the parameters being explored at this iteration model.set_params(**params) # print({k: v for k, v in model.get_params().items() if k in params}) model.fit(training) score = evaluate(model, protocol=protocol, error_metric=error) ttime = time() - tinit self._sout( f"hyperparams={params}\t got score {score:.5f} [took {ttime:.4f}s]", ) # if self.timeout > 0: # signal.alarm(0) # except TimeoutError: # self._sout(f"timeout ({self.timeout}s) reached for config {params}") # score = None except ValueError as e: self._sout( f"the combination of hyperparameters {params} is invalid. Exception: {e}", level=1, ) score = None # raise e except Exception as e: self._sout( f"something went wrong for config {params}; skipping:" f"\tException: {e}", level=1, ) # raise e score = None return params, score, model def extend( self, coll: LabelledCollection, pred_proba=None, prefit=False ) -> ExtendedCollection: assert hasattr(self, "best_model_"), "quantify called before fit" return self.best_model().extend(coll, pred_proba=pred_proba, prefit=prefit) def estimate(self, instances): """Estimate class prevalence values using the best model found after calling the :meth:`fit` method. :param instances: sample contanining the instances :return: a ndarray of shape `(n_classes)` with class prevalence estimates as according to the best model found by the model selection process. """ assert hasattr(self, "best_model_"), "estimate called before fit" return self.best_model().estimate(instances) def set_params(self, **parameters): """Sets the hyper-parameters to explore. :param parameters: a dictionary with keys the parameter names and values the list of values to explore """ self.param_grid = parameters def get_params(self, deep=True): """Returns the dictionary of hyper-parameters to explore (`param_grid`) :param deep: Unused :return: the dictionary `param_grid` """ return self.param_grid def best_model(self): """ Returns the best model found after calling the :meth:`fit` method, i.e., the one trained on the combination of hyper-parameters that minimized the error function. :return: a trained quantifier """ if hasattr(self, "best_model_"): return self.best_model_ raise ValueError("best_model called before fit") def best_score(self): if hasattr(self, "best_score_"): return self.best_score_ raise ValueError("best_score called before fit") class RandomizedSearchAE(GridSearchAE): ERR_THRESHOLD = 1e-4 MAX_ITER_IMPROV = 3 def _select_scores(self, hyper, training: LabelledCollection): log = logger() hyper = np.array(hyper) rand_index = np.random.choice( np.arange(len(hyper)), size=len(hyper), replace=False ) _n_jobs = os.cpu_count() + 1 + self.n_jobs if self.n_jobs < 0 else self.n_jobs batch_size = _n_jobs log.debug(f"{batch_size = }") rand_index = list( rand_index[: (len(hyper) // batch_size) * batch_size].reshape( (len(hyper) // batch_size, batch_size) ) ) + [rand_index[(len(hyper) // batch_size) * batch_size :]] scores = [] best_score, iter_from_improv = np.inf, 0 with Parallel(n_jobs=self.n_jobs) as parallel: for i, ri in enumerate(rand_index): tstart = time() _iter_scores = qc.utils.parallel( self._params_eval, [(params, training) for params in hyper[ri]], parallel=parallel, ) _best_iter_score = np.min( [s for _, s, _ in _iter_scores if s is not None] ) log.debug( f"[iter {i}] best score = {_best_iter_score:.8f} [took {time() - tstart:.3f}s]" ) scores += _iter_scores _check, best_score, iter_from_improv = self.__stop_condition( _best_iter_score, best_score, iter_from_improv ) if _check: break return scores def __stop_condition(self, best_iter_score, best_score, iter_from_improv): if best_iter_score < best_score: _improv = best_score - best_iter_score best_score = best_iter_score else: _improv = 0 if _improv > self.ERR_THRESHOLD: iter_from_improv = 0 else: iter_from_improv += 1 return iter_from_improv > self.MAX_ITER_IMPROV, best_score, iter_from_improv class HalvingSearchAE(GridSearchAE): def _select_scores(self, hyper, training: LabelledCollection): log = logger() hyper = np.array(hyper) threshold = 22 factor = 3 n_steps = math.ceil(math.log(len(hyper) / threshold, factor)) steps = np.logspace(n_steps, 0, base=1.0 / factor, num=n_steps + 1) with Parallel(n_jobs=self.n_jobs, verbose=1) as parallel: for _step in steps: tstart = time() _training, _ = ( training.split_stratified(train_prop=_step) if _step < 1.0 else (training, None) ) results = qc.utils.parallel( self._params_eval, [(params, _training) for params in hyper], parallel=parallel, ) scores = [(1.0 if s is None else s) for _, s, _ in results] res_hyper = np.array([h for h, _, _ in results], dtype="object") sorted_scores_idx = np.argsort(scores) best_score = scores[sorted_scores_idx[0]] hyper = res_hyper[ sorted_scores_idx[: round(len(res_hyper) * (1.0 / factor))] ] log.debug( f"[step {_step}] best score = {best_score:.8f} [took {time() - tstart:.3f}s]" ) return results class SpiderSearchAE(GridSearchAE): def __init__( self, model: BaseAccuracyEstimator, param_grid: dict, protocol: AbstractProtocol, error: Union[Callable, str] = qc.error.maccd, refit=True, n_jobs=None, verbose=False, err_threshold=1e-4, max_iter_improv=0, pd_th_min=1, best_width=2, ): super().__init__( model=model, param_grid=param_grid, protocol=protocol, error=error, refit=refit, n_jobs=n_jobs, verbose=verbose, ) self.err_threshold = err_threshold self.max_iter_improv = max_iter_improv self.pd_th_min = pd_th_min self.best_width = best_width def _select_scores(self, hyper, training: LabelledCollection): log = logger() hyper = np.array(hyper) _n_jobs = os.cpu_count() + 1 + self.n_jobs if self.n_jobs < 0 else self.n_jobs batch_size = _n_jobs rand_index = np.arange(len(hyper)) np.random.shuffle(rand_index) rand_index = rand_index[:batch_size] remaining_index = np.setdiff1d(np.arange(len(hyper)), rand_index) _hyper, _hyper_remaining = hyper[rand_index], hyper[remaining_index] scores = [] best_score, last_best, iter_from_improv = np.inf, np.inf, 0 with Parallel(n_jobs=self.n_jobs, verbose=1) as parallel: while len(_hyper) > 0: # log.debug(f"{len(_hyper_remaining)=}") tstart = time() _iter_scores = qc.utils.parallel( self._params_eval, [(params, training) for params in _hyper], parallel=parallel, ) # if all scores are None, select a new random batch if all([s[1] is None for s in _iter_scores]): rand_index = np.arange(len(_hyper_remaining)) np.random.shuffle(rand_index) rand_index = rand_index[:batch_size] remaining_index = np.setdiff1d( np.arange(len(_hyper_remaining)), rand_index ) _hyper = _hyper_remaining[rand_index] _hyper_remaining = _hyper_remaining[remaining_index] continue _sorted_idx = np.argsort( [1.0 if s is None else s for _, s, _ in _iter_scores] ) _sorted_scores = np.array(_iter_scores, dtype="object")[_sorted_idx] _best_iter_params = np.array( [p for p, _, _ in _sorted_scores], dtype="object" ) _best_iter_scores = np.array( [s for _, s, _ in _sorted_scores], dtype="object" ) for i, (_score, _param) in enumerate( zip( _best_iter_scores[: self.best_width], _best_iter_params[: self.best_width], ) ): log.debug( f"[size={len(_hyper)},place={i+1}] best score = {_score:.8f}; " f"best param = {_param} [took {time() - tstart:.3f}s]" ) scores += _iter_scores _improv = best_score - _best_iter_scores[0] _improv_last = last_best - _best_iter_scores[0] if _improv > self.err_threshold: iter_from_improv = 0 best_score = _best_iter_scores[0] elif _improv_last < 0: iter_from_improv += 1 last_best = _best_iter_scores[0] if iter_from_improv > self.max_iter_improv: break _new_hyper = np.array([], dtype="object") for _base_param in _best_iter_params[: self.best_width]: _rem_pds = np.array( [ self.__param_distance(_base_param, h) for h in _hyper_remaining ] ) _rem_pd_sort_idx = np.argsort(_rem_pds) # _min_pd = np.min(_rem_pds) _min_pd_len = (_rem_pds <= self.pd_th_min).nonzero()[0].shape[0] _new_hyper_idx = _rem_pd_sort_idx[:_min_pd_len] _hyper_rem_idx = np.setdiff1d( np.arange(len(_hyper_remaining)), _new_hyper_idx ) _new_hyper = np.concatenate( [_new_hyper, _hyper_remaining[_new_hyper_idx]] ) _hyper_remaining = _hyper_remaining[_hyper_rem_idx] _hyper = _new_hyper return scores def __param_distance(self, param1, param2): score = 0 for k, v in param1.items(): if param2[k] != v: score += 1 return score