experiments created, report refactoring started

This commit is contained in:
Lorenzo Volpi 2024-04-04 17:02:25 +02:00
parent 51867f3e9c
commit 9bc1208309
4 changed files with 418 additions and 0 deletions

View File

@ -0,0 +1,131 @@
import os
import numpy as np
import quapy as qp
from quapy.data.base import LabelledCollection
from quapy.data.datasets import (
TWITTER_SENTIMENT_DATASETS_TEST,
UCI_MULTICLASS_DATASETS,
)
from quapy.method.aggregative import EMQ
from sklearn.linear_model import LogisticRegression
from quacc.dataset import DatasetProvider as DP
from quacc.error import macrof1_fn, vanilla_acc_fn
from quacc.experiments.util import getpath
from quacc.models.base import ClassifierAccuracyPrediction
from quacc.models.baselines import ATC, DoC
from quacc.models.cont_table import CAPContingencyTable, ContTableTransferCAP, NaiveCAP
def gen_classifiers():
param_grid = {"C": np.logspace(-4, -4, 9), "class_weight": ["balanced", None]}
yield "LR", LogisticRegression()
# yield 'LR-opt', GridSearchCV(LogisticRegression(), param_grid, cv=5, n_jobs=-1)
# yield 'NB', GaussianNB()
# yield 'SVM(rbf)', SVC()
# yield 'SVM(linear)', LinearSVC()
def gen_multi_datasets(
only_names=False,
) -> [str, [LabelledCollection, LabelledCollection, LabelledCollection]]:
for dataset_name in np.setdiff1d(UCI_MULTICLASS_DATASETS, ["wine-quality"]):
if only_names:
yield dataset_name, None
else:
yield dataset_name, DP.uci_multiclass(dataset_name)
# yields the 20 newsgroups dataset
if only_names:
yield "20news", None
else:
yield "20news", DP.news20()
# yields the T1B@LeQua2022 (training) dataset
if only_names:
yield "T1B-LeQua2022", None
else:
yield "T1B-LeQua2022", DP.t1b_lequa2022()
def gen_tweet_datasets(
only_names=False,
) -> [str, [LabelledCollection, LabelledCollection, LabelledCollection]]:
for dataset_name in TWITTER_SENTIMENT_DATASETS_TEST:
if only_names:
yield dataset_name, None
else:
yield dataset_name, DP.twitter(dataset_name)
def gen_bin_datasets(
only_names=False,
) -> [str, [LabelledCollection, LabelledCollection, LabelledCollection]]:
if only_names:
for dataset_name in ["imdb", "CCAT", "GCAT", "MCAT"]:
yield dataset_name, None
else:
yield "imdb", DP.imdb()
for rcv1_name in [
"CCAT",
"GCAT",
"MCAT",
]:
yield rcv1_name, DP.rcv1(rcv1_name)
def gen_CAP(h, acc_fn, with_oracle=False) -> [str, ClassifierAccuracyPrediction]:
### CAP methods ###
# yield 'SebCAP', SebastianiCAP(h, acc_fn, ACC)
# yield 'SebCAP-SLD', SebastianiCAP(h, acc_fn, EMQ, predict_train_prev=not with_oracle)
# yield 'SebCAP-KDE', SebastianiCAP(h, acc_fn, KDEyML)
# yield 'SebCAPweight', SebastianiCAP(h, acc_fn, ACC, alpha=0)
# yield 'PabCAP', PabloCAP(h, acc_fn, ACC)
# yield 'PabCAP-SLD-median', PabloCAP(h, acc_fn, EMQ, aggr='median')
### baselines ###
yield "ATC-MC", ATC(h, acc_fn, scoring_fn="maxconf")
# yield 'ATC-NE', ATC(h, acc_fn, scoring_fn='neg_entropy')
yield "DoC", DoC(h, acc_fn, sample_size=qp.environ["SAMPLE_SIZE"])
def gen_CAP_cont_table(h) -> [str, CAPContingencyTable]:
acc_fn = None
yield "Naive", NaiveCAP(h, acc_fn)
yield "CT-PPS-EMQ", ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression()))
# yield 'CT-PPS-KDE', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.01))
# yield 'CT-PPS-KDE05', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.05))
# yield 'QuAcc(EMQ)nxn-noX', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_posteriors=True, add_X=False)
# yield 'QuAcc(EMQ)nxn', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()))
# yield 'QuAcc(EMQ)nxn-MC', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxconf=True)
# yield 'QuAcc(EMQ)nxn-NE', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_negentropy=True)
# yield 'QuAcc(EMQ)nxn-MIS', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxinfsoft=True)
# yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression()))
# yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression()))
# yield 'CT-PPSh-EMQ', ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression()), reuse_h=True)
# yield 'Equations-ACCh', NsquaredEquationsCAP(h, acc_fn, ACC, reuse_h=True)
# yield 'Equations-ACC', NsquaredEquationsCAP(h, acc_fn, ACC)
# yield 'Equations-SLD', NsquaredEquationsCAP(h, acc_fn, EMQ)
def get_method_names():
mock_h = LogisticRegression()
return [m for m, _ in gen_CAP(mock_h, None)] + [
m for m, _ in gen_CAP_cont_table(mock_h)
]
def gen_acc_measure():
yield "vanilla_accuracy", vanilla_acc_fn
yield "macro-F1", macrof1_fn
def any_missing(basedir, cls_name, dataset_name, method_name):
for acc_name, _ in gen_acc_measure():
if not os.path.exists(
getpath(basedir, cls_name, acc_name, dataset_name, method_name)
):
return True
return False

101
quacc/experiments/report.py Normal file
View File

@ -0,0 +1,101 @@
import os
from quacc.experiments.util import getpath
from quacc.utils.commons import load_json_file, save_json_file
class TestReport:
def __init__(
self,
cls_name,
acc_name,
dataset_name,
method_name,
):
self.cls_name = cls_name
self.acc_name = acc_name
self.dataset_name = dataset_name
self.method_name = method_name
def path(self, basedir):
return getpath(
basedir, self.cls_name, self.acc_name, self.dataset_name, self.method_name
)
def add_result(self, test_prevs, true_accs, estim_accs, t_train, t_test_ave):
self.test_prevs = test_prevs
self.true_accs = true_accs
self.estim_accs = estim_accs
self.t_train = t_train
self.t_test_ave = t_test_ave
return self
def save_json(self, basedir):
if not all([hasattr(self, _attr) for _attr in ["true_accs", "estim_accs"]]):
raise AttributeError("Incomplete report cannot be dumped")
result = {
"cls_name": self.cls_name,
"acc_name": self.acc_name,
"dataset_name": self.dataset_name,
"method_name": self.method_name,
"t_train": self.t_train,
"t_test_ave": self.t_test,
"true_accs": self.true_accs,
"estim_accs": self.estim_accs,
}
result_path = self.path(basedir)
save_json_file(result_path, result)
@classmethod
def load_json(cls, path) -> "TestReport":
def _test_report_hook(_dict):
return TestReport(
cls_name=_dict["cls_name"],
acc_name=_dict["acc_name"],
dataset_name=_dict["dataset_name"],
method_name=_dict["method_name"],
).add_result(
true_accs=_dict["true_accs"],
estim_accs=_dict["estim_accs"],
t_train=_dict["t_train"],
t_test_ave=_dict["t_test_ave"],
)
return load_json_file(path, object_hook=_test_report_hook)
class Report:
def __init__(self, tests: list[TestReport]):
self.tests = tests
@classmethod
def load_tests(cls, path):
if not os.path.isdir(path):
raise ValueError("Cannot load test results: invalid directory")
_tests = []
for f in os.listdir(path):
if f.endswith(".json"):
_tests.append(TestReport.load_json(f))
return Report(_tests)
def _filter_by_dataset(self):
pass
def _filer_by_acc(self):
pass
def _filter_by_methods(self):
pass
def train_table(self):
pass
def test_table(self):
pass
def shift_table(self):
pass

124
quacc/experiments/run.py Normal file
View File

@ -0,0 +1,124 @@
import itertools
import os
import quapy as qp
from ClassifierAccuracy.util.plotting import plot_diagonal
from quapy.protocol import UPP
from quacc.dataset import save_dataset_stats
from quacc.experiments.generators import (
any_missing,
gen_acc_measure,
gen_bin_datasets,
gen_CAP,
gen_CAP_cont_table,
gen_classifiers,
gen_multi_datasets,
gen_tweet_datasets,
)
from quacc.experiments.report import TestReport
from quacc.experiments.util import (
fit_method,
predictionsCAP,
predictionsCAPcont_table,
prevs_from_prot,
true_acc,
)
PROBLEM = "binary"
ORACLE = False
basedir = PROBLEM + ("-oracle" if ORACLE else "")
if PROBLEM == "binary":
qp.environ["SAMPLE_SIZE"] = 1000
NUM_TEST = 1000
gen_datasets = gen_bin_datasets
elif PROBLEM == "multiclass":
qp.environ["SAMPLE_SIZE"] = 250
NUM_TEST = 1000
gen_datasets = gen_multi_datasets
elif PROBLEM == "tweet":
qp.environ["SAMPLE_SIZE"] = 100
NUM_TEST = 1000
gen_datasets = gen_tweet_datasets
for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(
gen_classifiers(), gen_datasets()
):
print(f"training {cls_name} in {dataset_name}")
h.fit(*L.Xy)
# test generation protocol
test_prot = UPP(
U, repeats=NUM_TEST, return_type="labelled_collection", random_state=0
)
# compute some stats of the dataset
save_dataset_stats(f"dataset_stats/{dataset_name}.json", test_prot, L, V)
# precompute the actual accuracy values
true_accs = {}
for acc_name, acc_fn in gen_acc_measure():
true_accs[acc_name] = [true_acc(h, acc_fn, Ui) for Ui in test_prot()]
# instances of ClassifierAccuracyPrediction are bound to the evaluation measure, so they
# must be nested in the acc-for
for acc_name, acc_fn in gen_acc_measure():
print(f"\tfor measure {acc_name}")
for method_name, method in gen_CAP(h, acc_fn, with_oracle=ORACLE):
report = TestReport(cls_name, acc_name, dataset_name, method_name)
if os.path.exists(report.path(basedir)):
print(f"\t\t{method_name}-{acc_name} exists, skipping")
continue
print(f"\t\t{method_name} computing...")
method, t_train = fit_method(method, V)
estim_accs, t_test_ave = predictionsCAP(method, test_prot, ORACLE)
test_prevs = prevs_from_prot(test_prot)
report.add_result(
test_prevs=test_prevs,
true_accs=true_accs[acc_name],
estim_accs=estim_accs,
t_train=t_train,
t_test_ave=t_test_ave,
).save_json(basedir)
# instances of CAPContingencyTable instead are generic, and the evaluation measure can
# be nested to the predictions to speed up things
for method_name, method in gen_CAP_cont_table(h):
if not any_missing(basedir, cls_name, dataset_name, method_name):
print(
f"\t\tmethod {method_name} has all results already computed. Skipping."
)
continue
print(f"\t\tmethod {method_name} computing...")
method, t_train = fit_method(method, V)
estim_accs_dict, t_test_ave = predictionsCAPcont_table(
method, test_prot, gen_acc_measure, ORACLE
)
for acc_name in estim_accs_dict.keys():
report = TestReport(cls_name, acc_name, dataset_name, method_name)
report.add_result(
true_accs=true_accs[acc_name],
estim_accs=estim_accs,
t_train=t_train,
t_test_ave=t_test_ave,
).save_json(basedir)
print()
# generate diagonal plots
print("generating plots")
for (cls_name, _), (acc_name, _) in itertools.product(
gen_classifiers(), gen_acc_measure()
):
plot_diagonal(basedir, cls_name, acc_name)
for dataset_name, _ in gen_datasets(only_names=True):
plot_diagonal(basedir, cls_name, acc_name, dataset_name=dataset_name)
print("generating tables")
# gen_tables(basedir, datasets=[d for d, _ in gen_datasets(only_names=True)])

62
quacc/experiments/util.py Normal file
View File

@ -0,0 +1,62 @@
import os
from time import time
from quapy.data.base import LabelledCollection
from sklearn.base import BaseEstimator
from sklearn.metrics import confusion_matrix
def getpath(basedir, cls_name, acc_name, dataset_name, method_name):
return f"results/{basedir}/{cls_name}/{acc_name}/{dataset_name}/{method_name}.json"
def fit_method(method, V):
tinit = time()
method.fit(V)
t_train = time() - tinit
return method, t_train
def predictionsCAP(method, test_prot, oracle=False):
tinit = time()
if not oracle:
estim_accs = [method.predict(Ui.X) for Ui in test_prot()]
else:
estim_accs = [
method.predict(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()
]
t_test_ave = (time() - tinit) / test_prot.total()
return estim_accs, t_test_ave
def predictionsCAPcont_table(method, test_prot, gen_acc_measure, oracle=False):
estim_accs_dict = {}
tinit = time()
if not oracle:
estim_tables = [method.predict_ct(Ui.X) for Ui in test_prot()]
else:
estim_tables = [
method.predict_ct(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()
]
for acc_name, acc_fn in gen_acc_measure():
estim_accs_dict[acc_name] = [acc_fn(cont_table) for cont_table in estim_tables]
t_test_ave = (time() - tinit) / test_prot.total()
return estim_accs_dict, t_test_ave
def prevs_from_prot(prot):
return [Ui.prevalence() for Ui in prot()]
def true_acc(h: BaseEstimator, acc_fn: callable, U: LabelledCollection):
y_pred = h.predict(U.X)
y_true = U.y
conf_table = confusion_matrix(y_true, y_pred=y_pred, labels=U.classes_)
return acc_fn(conf_table)
def get_acc_name(acc_name):
return {
"Vanilla Accuracy": "vanilla_accuracy",
"Macro F1": "macro-F1",
}