legacy created
This commit is contained in:
parent
85ad127102
commit
51867f3e9c
|
@ -0,0 +1,376 @@
|
|||
from typing import List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from quapy.data import LabelledCollection
|
||||
|
||||
# Extended classes
|
||||
#
|
||||
# 0 ~ True 0
|
||||
# 1 ~ False 1
|
||||
# 2 ~ False 0
|
||||
# 3 ~ True 1
|
||||
# _____________________
|
||||
# | | |
|
||||
# | True 0 | False 1 |
|
||||
# |__________|__________|
|
||||
# | | |
|
||||
# | False 0 | True 1 |
|
||||
# |__________|__________|
|
||||
#
|
||||
|
||||
|
||||
def _split_index_by_pred(pred_proba: np.ndarray) -> List[np.ndarray]:
|
||||
_pred_label = np.argmax(pred_proba, axis=1)
|
||||
return [(_pred_label == cl).nonzero()[0] for cl in np.arange(pred_proba.shape[1])]
|
||||
|
||||
|
||||
class ExtensionPolicy:
|
||||
def __init__(self, collapse_false=False, group_false=False, dense=False):
|
||||
self.collapse_false = collapse_false
|
||||
self.group_false = group_false
|
||||
self.dense = dense
|
||||
|
||||
def qclasses(self, nbcl):
|
||||
if self.collapse_false:
|
||||
return np.arange(nbcl + 1)
|
||||
elif self.group_false:
|
||||
return np.arange(nbcl * 2)
|
||||
|
||||
return np.arange(nbcl**2)
|
||||
|
||||
def eclasses(self, nbcl):
|
||||
return np.arange(nbcl**2)
|
||||
|
||||
def tfp_classes(self, nbcl):
|
||||
if self.group_false:
|
||||
return np.arange(2)
|
||||
else:
|
||||
return np.arange(nbcl)
|
||||
|
||||
def matrix_idx(self, nbcl):
|
||||
if self.collapse_false:
|
||||
_idxs = np.array([[i, i] for i in range(nbcl)] + [[0, 1]]).T
|
||||
return tuple(_idxs)
|
||||
elif self.group_false:
|
||||
diag_idxs = np.diag_indices(nbcl)
|
||||
sub_diag_idxs = tuple(
|
||||
np.array([((i + 1) % nbcl, i) for i in range(nbcl)]).T
|
||||
)
|
||||
return tuple(np.concatenate(axis) for axis in zip(diag_idxs, sub_diag_idxs))
|
||||
# def mask_fn(m, k):
|
||||
# n = m.shape[0]
|
||||
# d = np.diag(np.tile(1, n))
|
||||
# d[tuple(zip(*[(i, (i + 1) % n) for i in range(n)]))] = 1
|
||||
# return d
|
||||
|
||||
# _mi = np.mask_indices(nbcl, mask_func=mask_fn)
|
||||
# print(_mi)
|
||||
# return _mi
|
||||
else:
|
||||
_idxs = np.indices((nbcl, nbcl))
|
||||
return _idxs[0].flatten(), _idxs[1].flatten()
|
||||
|
||||
def ext_lbl(self, nbcl):
|
||||
if self.collapse_false:
|
||||
|
||||
def cf_fun(t, p):
|
||||
return t if t == p else nbcl
|
||||
|
||||
return np.vectorize(cf_fun, signature="(),()->()")
|
||||
|
||||
elif self.group_false:
|
||||
|
||||
def gf_fun(t, p):
|
||||
# if t < nbcl - 1:
|
||||
# return t * 2 if t == p else (t * 2) + 1
|
||||
# else:
|
||||
# return t * 2 if t != p else (t * 2) + 1
|
||||
return p if t == p else nbcl + p
|
||||
|
||||
return np.vectorize(gf_fun, signature="(),()->()")
|
||||
|
||||
else:
|
||||
|
||||
def default_fn(t, p):
|
||||
return t * nbcl + p
|
||||
|
||||
return np.vectorize(default_fn, signature="(),()->()")
|
||||
|
||||
def true_lbl_from_pred(self, nbcl):
|
||||
if self.group_false:
|
||||
return np.vectorize(lambda t, p: 0 if t == p else 1, signature="(),()->()")
|
||||
else:
|
||||
return np.vectorize(lambda t, p: t, signature="(),()->()")
|
||||
|
||||
def can_f1(self, nbcl):
|
||||
return nbcl == 2 or (not self.collapse_false and not self.group_false)
|
||||
|
||||
|
||||
class ExtendedData:
|
||||
def __init__(
|
||||
self,
|
||||
instances: np.ndarray | sp.csr_matrix,
|
||||
pred_proba: np.ndarray,
|
||||
ext: np.ndarray = None,
|
||||
extpol=None,
|
||||
):
|
||||
self.extpol = ExtensionPolicy() if extpol is None else extpol
|
||||
self.b_instances_ = instances
|
||||
self.pred_proba_ = pred_proba
|
||||
self.ext_ = ext
|
||||
self.instances = self.__extend_instances(instances, pred_proba, ext=ext)
|
||||
|
||||
def __extend_instances(
|
||||
self,
|
||||
instances: np.ndarray | sp.csr_matrix,
|
||||
pred_proba: np.ndarray,
|
||||
ext: np.ndarray = None,
|
||||
) -> np.ndarray | sp.csr_matrix:
|
||||
to_append = ext
|
||||
if ext is None:
|
||||
to_append = pred_proba
|
||||
|
||||
if isinstance(instances, sp.csr_matrix):
|
||||
if self.extpol.dense:
|
||||
n_x = to_append
|
||||
else:
|
||||
n_x = sp.hstack([instances, sp.csr_matrix(to_append)], format="csr")
|
||||
elif isinstance(instances, np.ndarray):
|
||||
_concat = [instances, to_append] if not self.extpol.dense else [to_append]
|
||||
n_x = np.concatenate(_concat, axis=1)
|
||||
else:
|
||||
raise ValueError("Unsupported matrix format")
|
||||
|
||||
return n_x
|
||||
|
||||
@property
|
||||
def X(self):
|
||||
return self.instances
|
||||
|
||||
@property
|
||||
def nbcl(self):
|
||||
return self.pred_proba_.shape[1]
|
||||
|
||||
def split_by_pred(self, _indexes: List[np.ndarray] | None = None):
|
||||
def _empty_matrix():
|
||||
if isinstance(self.instances, np.ndarray):
|
||||
return np.asarray([], dtype=int)
|
||||
elif isinstance(self.instances, sp.csr_matrix):
|
||||
return sp.csr_matrix(np.empty((0, 0), dtype=int))
|
||||
|
||||
if _indexes is None:
|
||||
_indexes = _split_index_by_pred(self.pred_proba_)
|
||||
|
||||
_instances = [
|
||||
self.instances[ind] if ind.shape[0] > 0 else _empty_matrix()
|
||||
for ind in _indexes
|
||||
]
|
||||
|
||||
return _instances
|
||||
|
||||
def __len__(self):
|
||||
return self.instances.shape[0]
|
||||
|
||||
|
||||
class ExtendedLabels:
|
||||
def __init__(
|
||||
self,
|
||||
true: np.ndarray,
|
||||
pred: np.ndarray,
|
||||
nbcl: np.ndarray,
|
||||
extpol: ExtensionPolicy = None,
|
||||
):
|
||||
self.extpol = ExtensionPolicy() if extpol is None else extpol
|
||||
self.true = true
|
||||
self.pred = pred
|
||||
self.nbcl = nbcl
|
||||
|
||||
@property
|
||||
def y(self):
|
||||
return self.extpol.ext_lbl(self.nbcl)(self.true, self.pred)
|
||||
|
||||
@property
|
||||
def classes(self):
|
||||
return self.extpol.qclasses(self.nbcl)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return ExtendedLabels(self.true[idx], self.pred[idx], self.nbcl)
|
||||
|
||||
def split_by_pred(self, _indexes: List[np.ndarray]):
|
||||
_labels = []
|
||||
for cl, ind in enumerate(_indexes):
|
||||
_true, _pred = self.true[ind], self.pred[ind]
|
||||
assert (
|
||||
_pred.shape[0] == 0 or (_pred == _pred[0]).all()
|
||||
), "index is selecting non uniform class"
|
||||
_tfp = self.extpol.true_lbl_from_pred(self.nbcl)(_true, _pred)
|
||||
_labels.append(_tfp)
|
||||
|
||||
return _labels, self.extpol.tfp_classes(self.nbcl)
|
||||
|
||||
|
||||
class ExtendedPrev:
|
||||
def __init__(
|
||||
self,
|
||||
flat: np.ndarray,
|
||||
nbcl: int,
|
||||
extpol: ExtensionPolicy = None,
|
||||
):
|
||||
self.flat = flat
|
||||
self.nbcl = nbcl
|
||||
self.extpol = ExtensionPolicy() if extpol is None else extpol
|
||||
# self._matrix = self.__build_matrix()
|
||||
|
||||
def __build_matrix(self):
|
||||
_matrix = np.zeros((self.nbcl, self.nbcl))
|
||||
_matrix[self.extpol.matrix_idx(self.nbcl)] = self.flat
|
||||
return _matrix
|
||||
|
||||
def can_f1(self):
|
||||
return self.extpol.can_f1(self.nbcl)
|
||||
|
||||
@property
|
||||
def A(self):
|
||||
# return self._matrix
|
||||
return self.__build_matrix()
|
||||
|
||||
@property
|
||||
def classes(self):
|
||||
return self.extpol.qclasses(self.nbcl)
|
||||
|
||||
|
||||
class ExtMulPrev(ExtendedPrev):
|
||||
def __init__(
|
||||
self,
|
||||
flat: np.ndarray,
|
||||
nbcl: int,
|
||||
q_classes: list = None,
|
||||
extpol: ExtensionPolicy = None,
|
||||
):
|
||||
super().__init__(flat, nbcl, extpol=extpol)
|
||||
self.flat = self.__check_q_classes(q_classes, flat)
|
||||
|
||||
def __check_q_classes(self, q_classes, flat):
|
||||
if q_classes is None:
|
||||
return flat
|
||||
q_classes = np.array(q_classes)
|
||||
_flat = np.zeros(self.extpol.qclasses(self.nbcl).shape)
|
||||
_flat[q_classes] = flat
|
||||
return _flat
|
||||
|
||||
|
||||
class ExtBinPrev(ExtendedPrev):
|
||||
def __init__(
|
||||
self,
|
||||
flat: List[np.ndarray],
|
||||
nbcl: int,
|
||||
q_classes: List[List[int]] = None,
|
||||
extpol: ExtensionPolicy = None,
|
||||
):
|
||||
super().__init__(flat, nbcl, extpol=extpol)
|
||||
flat = self.__check_q_classes(q_classes, flat)
|
||||
self.flat = self.__build_flat(flat)
|
||||
|
||||
def __check_q_classes(self, q_classes, flat):
|
||||
if q_classes is None:
|
||||
return flat
|
||||
_flat = []
|
||||
for fl, qc in zip(flat, q_classes):
|
||||
qc = np.array(qc)
|
||||
_fl = np.zeros(self.extpol.tfp_classes(self.nbcl).shape)
|
||||
_fl[qc] = fl
|
||||
_flat.append(_fl)
|
||||
return np.array(_flat)
|
||||
|
||||
def __build_flat(self, flat):
|
||||
return np.concatenate(flat.T)
|
||||
|
||||
|
||||
class ExtendedCollection(LabelledCollection):
|
||||
def __init__(
|
||||
self,
|
||||
instances: np.ndarray | sp.csr_matrix,
|
||||
labels: np.ndarray,
|
||||
pred_proba: np.ndarray = None,
|
||||
ext: np.ndarray = None,
|
||||
extpol=None,
|
||||
):
|
||||
self.extpol = ExtensionPolicy() if extpol is None else extpol
|
||||
e_data, e_labels = self.__extend_collection(
|
||||
instances=instances,
|
||||
labels=labels,
|
||||
pred_proba=pred_proba,
|
||||
ext=ext,
|
||||
)
|
||||
self.e_data_ = e_data
|
||||
self.e_labels_ = e_labels
|
||||
super().__init__(e_data.X, e_labels.y, classes=e_labels.classes)
|
||||
|
||||
@classmethod
|
||||
def from_lc(
|
||||
cls,
|
||||
lc: LabelledCollection,
|
||||
pred_proba: np.ndarray,
|
||||
ext: np.ndarray = None,
|
||||
extpol=None,
|
||||
):
|
||||
return ExtendedCollection(
|
||||
lc.X, lc.y, pred_proba=pred_proba, ext=ext, extpol=extpol
|
||||
)
|
||||
|
||||
@property
|
||||
def pred_proba(self):
|
||||
return self.e_data_.pred_proba_
|
||||
|
||||
@property
|
||||
def ext(self):
|
||||
return self.e_data_.ext_
|
||||
|
||||
@property
|
||||
def eX(self):
|
||||
return self.e_data_
|
||||
|
||||
@property
|
||||
def ey(self):
|
||||
return self.e_labels_
|
||||
|
||||
@property
|
||||
def n_base_classes(self):
|
||||
return self.e_labels_.nbcl
|
||||
|
||||
@property
|
||||
def n_classes(self):
|
||||
return len(self.e_labels_.classes)
|
||||
|
||||
def e_prevalence(self) -> ExtendedPrev:
|
||||
_prev = self.prevalence()
|
||||
return ExtendedPrev(_prev, self.n_base_classes, extpol=self.extpol)
|
||||
|
||||
def split_by_pred(self):
|
||||
_indexes = _split_index_by_pred(self.pred_proba)
|
||||
_instances = self.e_data_.split_by_pred(_indexes)
|
||||
# _labels = [self.ey[ind] for ind in _indexes]
|
||||
_labels, _cls = self.e_labels_.split_by_pred(_indexes)
|
||||
return [
|
||||
LabelledCollection(inst, lbl, classes=_cls)
|
||||
for inst, lbl in zip(_instances, _labels)
|
||||
]
|
||||
|
||||
def __extend_collection(
|
||||
self,
|
||||
instances: sp.csr_matrix | np.ndarray,
|
||||
labels: np.ndarray,
|
||||
pred_proba: np.ndarray,
|
||||
ext: np.ndarray = None,
|
||||
extpol=None,
|
||||
) -> Tuple[ExtendedData, ExtendedLabels]:
|
||||
n_classes = pred_proba.shape[1]
|
||||
# n_X = [ X | predicted probs. ]
|
||||
e_instances = ExtendedData(instances, pred_proba, ext=ext, extpol=self.extpol)
|
||||
|
||||
# n_y = (exptected y, predicted y)
|
||||
preds = np.argmax(pred_proba, axis=-1)
|
||||
e_labels = ExtendedLabels(labels, preds, n_classes, extpol=self.extpol)
|
||||
|
||||
return e_instances, e_labels
|
|
@ -0,0 +1,86 @@
|
|||
from contextlib import contextmanager
|
||||
|
||||
import numpy as np
|
||||
import quapy as qp
|
||||
import yaml
|
||||
|
||||
|
||||
class environ:
|
||||
_default_env = {
|
||||
"DATASET_NAME": None,
|
||||
"DATASET_TARGET": None,
|
||||
"METRICS": [],
|
||||
"COMP_ESTIMATORS": [],
|
||||
"DATASET_N_PREVS": 9,
|
||||
"DATASET_PREVS": None,
|
||||
"OUT_DIR_NAME": "output",
|
||||
"OUT_DIR": None,
|
||||
"PLOT_DIR_NAME": "plot",
|
||||
"PLOT_OUT_DIR": None,
|
||||
"DATASET_DIR_UPDATE": False,
|
||||
"PROTOCOL_N_PREVS": 21,
|
||||
"PROTOCOL_REPEATS": 100,
|
||||
"SAMPLE_SIZE": 1000,
|
||||
# "PLOT_ESTIMATORS": [],
|
||||
"PLOT_STDEV": False,
|
||||
"_R_SEED": 0,
|
||||
"N_JOBS": 1,
|
||||
}
|
||||
_keys = list(_default_env.keys())
|
||||
|
||||
def __init__(self):
|
||||
self.__load_file()
|
||||
|
||||
def __load_file(self):
|
||||
_state = environ._default_env.copy()
|
||||
|
||||
with open("conf.yaml", "r") as f:
|
||||
confs = yaml.safe_load(f)["exec"]
|
||||
|
||||
_state = _state | confs["global"]
|
||||
self.__setdict(_state)
|
||||
self._confs = confs["confs"]
|
||||
|
||||
def __setdict(self, d: dict):
|
||||
for k, v in d.items():
|
||||
super().__setattr__(k, v)
|
||||
match k:
|
||||
case "SAMPLE_SIZE":
|
||||
qp.environ["SAMPLE_SIZE"] = v
|
||||
case "_R_SEED":
|
||||
qp.environ["_R_SEED"] = v
|
||||
np.random.seed(v)
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
return {k: self.__getattribute__(k) for k in environ._keys}
|
||||
|
||||
@property
|
||||
def confs(self):
|
||||
return self._confs.copy()
|
||||
|
||||
@contextmanager
|
||||
def load(self, conf):
|
||||
__current = self.to_dict()
|
||||
__np_random_state = np.random.get_state()
|
||||
|
||||
if conf is None:
|
||||
conf = {}
|
||||
|
||||
if isinstance(conf, environ):
|
||||
conf = conf.to_dict()
|
||||
|
||||
self.__setdict(conf)
|
||||
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
self.__setdict(__current)
|
||||
np.random.set_state(__np_random_state)
|
||||
|
||||
def load_confs(self):
|
||||
for c in self.confs:
|
||||
with self.load(c):
|
||||
yield c
|
||||
|
||||
|
||||
env = environ()
|
|
@ -0,0 +1,115 @@
|
|||
from functools import wraps
|
||||
|
||||
import numpy as np
|
||||
import quapy.functional as F
|
||||
import sklearn.metrics as metrics
|
||||
from quapy.method.aggregative import ACC, EMQ
|
||||
from sklearn import clone
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
import quacc as qc
|
||||
from quacc.legacy.evaluation.report import EvaluationReport
|
||||
|
||||
_alts = {}
|
||||
|
||||
|
||||
def alt(func):
|
||||
@wraps(func)
|
||||
def wrapper(c_model, validation, protocol):
|
||||
return func(c_model, validation, protocol)
|
||||
|
||||
wrapper.name = func.__name__
|
||||
_alts[func.__name__] = wrapper
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@alt
|
||||
def cross(c_model, validation, protocol):
|
||||
y_val = validation.labels
|
||||
y_hat_val = c_model.predict(validation.instances)
|
||||
|
||||
qcls = clone(c_model)
|
||||
qcls.fit(*validation.Xy)
|
||||
|
||||
er = EvaluationReport(name="cross")
|
||||
for sample in protocol():
|
||||
y_hat = c_model.predict(sample.instances)
|
||||
y = sample.labels
|
||||
ground_acc = (y_hat == y).mean()
|
||||
ground_f1 = metrics.f1_score(y, y_hat, zero_division=0)
|
||||
|
||||
q = EMQ(qcls)
|
||||
q.fit(validation, fit_classifier=False)
|
||||
|
||||
M_hat = ACC.getPteCondEstim(validation.classes_, y_val, y_hat_val)
|
||||
p_hat = q.quantify(sample.instances)
|
||||
cont_table_hat = p_hat * M_hat
|
||||
|
||||
acc_score = qc.error.acc(cont_table_hat)
|
||||
f1_score = qc.error.f1(cont_table_hat)
|
||||
|
||||
meta_acc = abs(acc_score - ground_acc)
|
||||
meta_f1 = abs(f1_score - ground_f1)
|
||||
er.append_row(
|
||||
sample.prevalence(),
|
||||
acc=meta_acc,
|
||||
f1=meta_f1,
|
||||
acc_score=acc_score,
|
||||
f1_score=f1_score,
|
||||
)
|
||||
|
||||
return er
|
||||
|
||||
|
||||
@alt
|
||||
def cross2(c_model, validation, protocol):
|
||||
classes = validation.classes_
|
||||
y_val = validation.labels
|
||||
y_hat_val = c_model.predict(validation.instances)
|
||||
M_hat = ACC.getPteCondEstim(classes, y_val, y_hat_val)
|
||||
pos_prev_val = validation.prevalence()[1]
|
||||
|
||||
er = EvaluationReport(name="cross2")
|
||||
for sample in protocol():
|
||||
y_test = sample.labels
|
||||
y_hat_test = c_model.predict(sample.instances)
|
||||
ground_acc = (y_hat_test == y_test).mean()
|
||||
ground_f1 = metrics.f1_score(y_test, y_hat_test, zero_division=0)
|
||||
pos_prev_cc = F.prevalence_from_labels(y_hat_test, classes)[1]
|
||||
tpr_hat = M_hat[1, 1]
|
||||
fpr_hat = M_hat[1, 0]
|
||||
tnr_hat = M_hat[0, 0]
|
||||
pos_prev_test_hat = (pos_prev_cc - fpr_hat) / (tpr_hat - fpr_hat)
|
||||
pos_prev_test_hat = np.clip(pos_prev_test_hat, 0, 1)
|
||||
|
||||
if pos_prev_val > 0.5:
|
||||
# in this case, the tpr might be a more reliable estimate than tnr
|
||||
A = np.asarray(
|
||||
[[0, 0, 1, 1], [0, 1, 0, 1], [1, 1, 1, 1], [0, tpr_hat, 0, tpr_hat - 1]]
|
||||
)
|
||||
else:
|
||||
# in this case, the tnr might be a more reliable estimate than tpr
|
||||
A = np.asarray(
|
||||
[[0, 0, 1, 1], [0, 1, 0, 1], [1, 1, 1, 1], [tnr_hat - 1, 0, tnr_hat, 0]]
|
||||
)
|
||||
|
||||
b = np.asarray([pos_prev_cc, pos_prev_test_hat, 1, 0])
|
||||
|
||||
tn, fn, fp, tp = np.linalg.solve(A, b)
|
||||
cont_table_hat = np.array([[tn, fp], [fn, tp]])
|
||||
|
||||
acc_score = qc.error.acc(cont_table_hat)
|
||||
f1_score = qc.error.f1(cont_table_hat)
|
||||
|
||||
meta_acc = abs(acc_score - ground_acc)
|
||||
meta_f1 = abs(f1_score - ground_f1)
|
||||
er.append_row(
|
||||
sample.prevalence(),
|
||||
acc=meta_acc,
|
||||
f1=meta_f1,
|
||||
acc_score=acc_score,
|
||||
f1_score=f1_score,
|
||||
)
|
||||
|
||||
return er
|
|
@ -0,0 +1,590 @@
|
|||
from functools import wraps
|
||||
from statistics import mean
|
||||
|
||||
import numpy as np
|
||||
import sklearn.metrics as metrics
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.protocol import APP, AbstractStochasticSeededProtocol
|
||||
from scipy.sparse import issparse
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.model_selection import cross_validate
|
||||
|
||||
import baselines.atc as atc
|
||||
import baselines.doc as doclib
|
||||
import baselines.gde as gdelib
|
||||
import baselines.impweight as iw
|
||||
import baselines.mandoline as mandolib
|
||||
import baselines.rca as rcalib
|
||||
from baselines.utils import clone_fit
|
||||
from quacc.legacy.environment import env
|
||||
|
||||
from .report import EvaluationReport
|
||||
|
||||
_baselines = {}
|
||||
|
||||
|
||||
def baseline(func):
|
||||
@wraps(func)
|
||||
def wrapper(c_model, validation, protocol):
|
||||
return func(c_model, validation, protocol)
|
||||
|
||||
wrapper.name = func.__name__
|
||||
_baselines[func.__name__] = wrapper
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@baseline
|
||||
def kfcv(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict",
|
||||
):
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
|
||||
scoring = ["accuracy", "f1_macro"]
|
||||
scores = cross_validate(c_model, validation.X, validation.y, scoring=scoring)
|
||||
acc_score = mean(scores["test_accuracy"])
|
||||
f1_score = mean(scores["test_f1_macro"])
|
||||
|
||||
report = EvaluationReport(name="kfcv")
|
||||
for test in protocol():
|
||||
test_preds = c_model_predict(test.X)
|
||||
meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_preds))
|
||||
meta_f1 = abs(
|
||||
f1_score - metrics.f1_score(test.y, test_preds, average=f1_average)
|
||||
)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc_score=acc_score,
|
||||
f1_score=f1_score,
|
||||
acc=meta_acc,
|
||||
f1=meta_f1,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def ref(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
):
|
||||
c_model_predict = getattr(c_model, "predict")
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
|
||||
report = EvaluationReport(name="ref")
|
||||
for test in protocol():
|
||||
test_preds = c_model_predict(test.X)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc_score=metrics.accuracy_score(test.y, test_preds),
|
||||
f1_score=metrics.f1_score(test.y, test_preds, average=f1_average),
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def naive(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict",
|
||||
):
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
|
||||
val_preds = c_model_predict(validation.X)
|
||||
val_acc = metrics.accuracy_score(validation.y, val_preds)
|
||||
val_f1 = metrics.f1_score(validation.y, val_preds, average=f1_average)
|
||||
|
||||
report = EvaluationReport(name="naive")
|
||||
for test in protocol():
|
||||
test_preds = c_model_predict(test.X)
|
||||
test_acc = metrics.accuracy_score(test.y, test_preds)
|
||||
test_f1 = metrics.f1_score(test.y, test_preds, average=f1_average)
|
||||
meta_acc = abs(val_acc - test_acc)
|
||||
meta_f1 = abs(val_f1 - test_f1)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc_score=val_acc,
|
||||
f1_score=val_f1,
|
||||
acc=meta_acc,
|
||||
f1=meta_f1,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def mandoline(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict_proba",
|
||||
) -> EvaluationReport:
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
|
||||
val_probs = c_model_predict(validation.X)
|
||||
val_preds = np.argmax(val_probs, axis=1)
|
||||
D_val = mandolib.get_slices(val_probs)
|
||||
emprical_mat_list_val = (1.0 * (val_preds == validation.y))[:, np.newaxis]
|
||||
|
||||
report = EvaluationReport(name="mandoline")
|
||||
for test in protocol():
|
||||
test_probs = c_model_predict(test.X)
|
||||
test_pred = np.argmax(test_probs, axis=1)
|
||||
D_test = mandolib.get_slices(test_probs)
|
||||
wp = mandolib.estimate_performance(D_val, D_test, None, emprical_mat_list_val)
|
||||
score = wp.all_estimates[0].weighted[0]
|
||||
meta_score = abs(score - metrics.accuracy_score(test.y, test_pred))
|
||||
report.append_row(test.prevalence(), acc=meta_score, acc_score=score)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def rca(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict",
|
||||
):
|
||||
"""elsahar19"""
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
val1, val2 = validation.split_stratified(train_prop=0.5, random_state=env._R_SEED)
|
||||
val1_pred1 = c_model_predict(val1.X)
|
||||
|
||||
val2_protocol = APP(
|
||||
val2,
|
||||
n_prevalences=21,
|
||||
repeats=100,
|
||||
return_type="labelled_collection",
|
||||
)
|
||||
val2_prot_preds = []
|
||||
val2_rca = []
|
||||
val2_prot_preds = []
|
||||
val2_prot_y = []
|
||||
for v2 in val2_protocol():
|
||||
_preds = c_model_predict(v2.X)
|
||||
try:
|
||||
c_model2 = clone_fit(c_model, v2.X, _preds)
|
||||
c_model2_predict = getattr(c_model2, predict_method)
|
||||
val1_pred2 = c_model2_predict(val1.X)
|
||||
rca_score = 1.0 - rcalib.get_score(val1_pred1, val1_pred2, val1.y)
|
||||
val2_rca.append(rca_score)
|
||||
val2_prot_preds.append(_preds)
|
||||
val2_prot_y.append(v2.y)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
val_targets_acc = np.array(
|
||||
[
|
||||
metrics.accuracy_score(v2_y, v2_preds)
|
||||
for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
|
||||
]
|
||||
)
|
||||
reg_acc = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_acc)
|
||||
val_targets_f1 = np.array(
|
||||
[
|
||||
metrics.f1_score(v2_y, v2_preds, average=f1_average)
|
||||
for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
|
||||
]
|
||||
)
|
||||
reg_f1 = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_f1)
|
||||
|
||||
report = EvaluationReport(name="rca")
|
||||
for test in protocol():
|
||||
try:
|
||||
test_preds = c_model_predict(test.X)
|
||||
c_model2 = clone_fit(c_model, test.X, test_preds)
|
||||
c_model2_predict = getattr(c_model2, predict_method)
|
||||
val1_pred2 = c_model2_predict(val1.X)
|
||||
rca_score = 1.0 - rcalib.get_score(val1_pred1, val1_pred2, val1.y)
|
||||
acc_score = reg_acc.predict(np.array([[rca_score]]))[0]
|
||||
f1_score = reg_f1.predict(np.array([[rca_score]]))[0]
|
||||
meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_preds))
|
||||
meta_f1 = abs(
|
||||
f1_score - metrics.f1_score(test.y, test_preds, average=f1_average)
|
||||
)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc=meta_acc,
|
||||
acc_score=acc_score,
|
||||
f1=meta_f1,
|
||||
f1_score=f1_score,
|
||||
)
|
||||
except ValueError:
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc=np.nan,
|
||||
acc_score=np.nan,
|
||||
f1=np.nan,
|
||||
f1_score=np.nan,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def rca_star(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict",
|
||||
):
|
||||
"""elsahar19"""
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
validation1, val2 = validation.split_stratified(
|
||||
train_prop=0.5, random_state=env._R_SEED
|
||||
)
|
||||
val11, val12 = validation1.split_stratified(
|
||||
train_prop=0.5, random_state=env._R_SEED
|
||||
)
|
||||
|
||||
val11_pred = c_model_predict(val11.X)
|
||||
c_model1 = clone_fit(c_model, val11.X, val11_pred)
|
||||
c_model1_predict = getattr(c_model1, predict_method)
|
||||
val12_pred1 = c_model1_predict(val12.X)
|
||||
|
||||
val2_protocol = APP(
|
||||
val2,
|
||||
n_prevalences=21,
|
||||
repeats=100,
|
||||
return_type="labelled_collection",
|
||||
)
|
||||
val2_prot_preds = []
|
||||
val2_rca = []
|
||||
val2_prot_preds = []
|
||||
val2_prot_y = []
|
||||
for v2 in val2_protocol():
|
||||
_preds = c_model_predict(v2.X)
|
||||
try:
|
||||
c_model2 = clone_fit(c_model, v2.X, _preds)
|
||||
c_model2_predict = getattr(c_model2, predict_method)
|
||||
val12_pred2 = c_model2_predict(val12.X)
|
||||
rca_score = 1.0 - rcalib.get_score(val12_pred1, val12_pred2, val12.y)
|
||||
val2_rca.append(rca_score)
|
||||
val2_prot_preds.append(_preds)
|
||||
val2_prot_y.append(v2.y)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
val_targets_acc = np.array(
|
||||
[
|
||||
metrics.accuracy_score(v2_y, v2_preds)
|
||||
for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
|
||||
]
|
||||
)
|
||||
reg_acc = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_acc)
|
||||
val_targets_f1 = np.array(
|
||||
[
|
||||
metrics.f1_score(v2_y, v2_preds, average=f1_average)
|
||||
for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
|
||||
]
|
||||
)
|
||||
reg_f1 = LinearRegression().fit(np.array(val2_rca)[:, np.newaxis], val_targets_f1)
|
||||
|
||||
report = EvaluationReport(name="rca_star")
|
||||
for test in protocol():
|
||||
try:
|
||||
test_pred = c_model_predict(test.X)
|
||||
c_model2 = clone_fit(c_model, test.X, test_pred)
|
||||
c_model2_predict = getattr(c_model2, predict_method)
|
||||
val12_pred2 = c_model2_predict(val12.X)
|
||||
rca_star_score = 1.0 - rcalib.get_score(val12_pred1, val12_pred2, val12.y)
|
||||
acc_score = reg_acc.predict(np.array([[rca_star_score]]))[0]
|
||||
f1_score = reg_f1.predict(np.array([[rca_score]]))[0]
|
||||
meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_pred))
|
||||
meta_f1 = abs(
|
||||
f1_score - metrics.f1_score(test.y, test_pred, average=f1_average)
|
||||
)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc=meta_acc,
|
||||
acc_score=acc_score,
|
||||
f1=meta_f1,
|
||||
f1_score=f1_score,
|
||||
)
|
||||
except ValueError:
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc=np.nan,
|
||||
acc_score=np.nan,
|
||||
f1=np.nan,
|
||||
f1_score=np.nan,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def atc_mc(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict_proba",
|
||||
):
|
||||
"""garg"""
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
|
||||
## Load ID validation data probs and labels
|
||||
val_probs, val_labels = c_model_predict(validation.X), validation.y
|
||||
|
||||
## score function, e.g., negative entropy or argmax confidence
|
||||
val_scores = atc.get_max_conf(val_probs)
|
||||
val_preds = np.argmax(val_probs, axis=-1)
|
||||
_, atc_thres = atc.find_ATC_threshold(val_scores, val_labels == val_preds)
|
||||
|
||||
report = EvaluationReport(name="atc_mc")
|
||||
for test in protocol():
|
||||
## Load OOD test data probs
|
||||
test_probs = c_model_predict(test.X)
|
||||
test_preds = np.argmax(test_probs, axis=-1)
|
||||
test_scores = atc.get_max_conf(test_probs)
|
||||
atc_accuracy = atc.get_ATC_acc(atc_thres, test_scores)
|
||||
meta_acc = abs(atc_accuracy - metrics.accuracy_score(test.y, test_preds))
|
||||
f1_score = atc.get_ATC_f1(
|
||||
atc_thres, test_scores, test_probs, average=f1_average
|
||||
)
|
||||
meta_f1 = abs(
|
||||
f1_score - metrics.f1_score(test.y, test_preds, average=f1_average)
|
||||
)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc=meta_acc,
|
||||
acc_score=atc_accuracy,
|
||||
f1_score=f1_score,
|
||||
f1=meta_f1,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def atc_ne(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict_proba",
|
||||
):
|
||||
"""garg"""
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
|
||||
## Load ID validation data probs and labels
|
||||
val_probs, val_labels = c_model_predict(validation.X), validation.y
|
||||
|
||||
## score function, e.g., negative entropy or argmax confidence
|
||||
val_scores = atc.get_entropy(val_probs)
|
||||
val_preds = np.argmax(val_probs, axis=-1)
|
||||
_, atc_thres = atc.find_ATC_threshold(val_scores, val_labels == val_preds)
|
||||
|
||||
report = EvaluationReport(name="atc_ne")
|
||||
for test in protocol():
|
||||
## Load OOD test data probs
|
||||
test_probs = c_model_predict(test.X)
|
||||
test_preds = np.argmax(test_probs, axis=-1)
|
||||
test_scores = atc.get_entropy(test_probs)
|
||||
atc_accuracy = atc.get_ATC_acc(atc_thres, test_scores)
|
||||
meta_acc = abs(atc_accuracy - metrics.accuracy_score(test.y, test_preds))
|
||||
f1_score = atc.get_ATC_f1(
|
||||
atc_thres, test_scores, test_probs, average=f1_average
|
||||
)
|
||||
meta_f1 = abs(
|
||||
f1_score - metrics.f1_score(test.y, test_preds, average=f1_average)
|
||||
)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc=meta_acc,
|
||||
acc_score=atc_accuracy,
|
||||
f1_score=f1_score,
|
||||
f1=meta_f1,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def doc(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict_proba",
|
||||
):
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
f1_average = "binary" if validation.n_classes == 2 else "macro"
|
||||
|
||||
val1, val2 = validation.split_stratified(train_prop=0.5, random_state=env._R_SEED)
|
||||
val1_probs = c_model_predict(val1.X)
|
||||
val1_mc = np.max(val1_probs, axis=-1)
|
||||
val1_preds = np.argmax(val1_probs, axis=-1)
|
||||
val1_acc = metrics.accuracy_score(val1.y, val1_preds)
|
||||
val1_f1 = metrics.f1_score(val1.y, val1_preds, average=f1_average)
|
||||
val2_protocol = APP(
|
||||
val2,
|
||||
n_prevalences=21,
|
||||
repeats=100,
|
||||
return_type="labelled_collection",
|
||||
)
|
||||
val2_prot_mc = []
|
||||
val2_prot_preds = []
|
||||
val2_prot_y = []
|
||||
for v2 in val2_protocol():
|
||||
_probs = c_model_predict(v2.X)
|
||||
_mc = np.max(_probs, axis=-1)
|
||||
_preds = np.argmax(_probs, axis=-1)
|
||||
val2_prot_mc.append(_mc)
|
||||
val2_prot_preds.append(_preds)
|
||||
val2_prot_y.append(v2.y)
|
||||
|
||||
val_scores = np.array([doclib.get_doc(val1_mc, v2_mc) for v2_mc in val2_prot_mc])
|
||||
val_targets_acc = np.array(
|
||||
[
|
||||
val1_acc - metrics.accuracy_score(v2_y, v2_preds)
|
||||
for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
|
||||
]
|
||||
)
|
||||
reg_acc = LinearRegression().fit(val_scores[:, np.newaxis], val_targets_acc)
|
||||
val_targets_f1 = np.array(
|
||||
[
|
||||
val1_f1 - metrics.f1_score(v2_y, v2_preds, average=f1_average)
|
||||
for v2_y, v2_preds in zip(val2_prot_y, val2_prot_preds)
|
||||
]
|
||||
)
|
||||
reg_f1 = LinearRegression().fit(val_scores[:, np.newaxis], val_targets_f1)
|
||||
|
||||
report = EvaluationReport(name="doc")
|
||||
for test in protocol():
|
||||
test_probs = c_model_predict(test.X)
|
||||
test_preds = np.argmax(test_probs, axis=-1)
|
||||
test_mc = np.max(test_probs, axis=-1)
|
||||
acc_score = (
|
||||
val1_acc
|
||||
- reg_acc.predict(np.array([[doclib.get_doc(val1_mc, test_mc)]]))[0]
|
||||
)
|
||||
f1_score = (
|
||||
val1_f1 - reg_f1.predict(np.array([[doclib.get_doc(val1_mc, test_mc)]]))[0]
|
||||
)
|
||||
meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_preds))
|
||||
meta_f1 = abs(
|
||||
f1_score - metrics.f1_score(test.y, test_preds, average=f1_average)
|
||||
)
|
||||
report.append_row(
|
||||
test.prevalence(),
|
||||
acc=meta_acc,
|
||||
acc_score=acc_score,
|
||||
f1=meta_f1,
|
||||
f1_score=f1_score,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def doc_feat(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict_proba",
|
||||
):
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
|
||||
val_probs, val_labels = c_model_predict(validation.X), validation.y
|
||||
val_scores = np.max(val_probs, axis=-1)
|
||||
val_preds = np.argmax(val_probs, axis=-1)
|
||||
v1acc = np.mean(val_preds == val_labels) * 100
|
||||
|
||||
report = EvaluationReport(name="doc_feat")
|
||||
for test in protocol():
|
||||
test_probs = c_model_predict(test.X)
|
||||
test_preds = np.argmax(test_probs, axis=-1)
|
||||
test_scores = np.max(test_probs, axis=-1)
|
||||
score = (v1acc + doc.get_doc(val_scores, test_scores)) / 100.0
|
||||
meta_acc = abs(score - metrics.accuracy_score(test.y, test_preds))
|
||||
report.append_row(test.prevalence(), acc=meta_acc, acc_score=score)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def gde(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict",
|
||||
) -> EvaluationReport:
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
val1, val2 = validation.split_stratified(train_prop=0.5, random_state=env._R_SEED)
|
||||
c_model1 = clone_fit(c_model, val1.X, val1.y)
|
||||
c_model1_predict = getattr(c_model1, predict_method)
|
||||
c_model2 = clone_fit(c_model, val2.X, val2.y)
|
||||
c_model2_predict = getattr(c_model2, predict_method)
|
||||
|
||||
report = EvaluationReport(name="gde")
|
||||
for test in protocol():
|
||||
test_pred = c_model_predict(test.X)
|
||||
test_pred1 = c_model1_predict(test.X)
|
||||
test_pred2 = c_model2_predict(test.X)
|
||||
score = gdelib.get_score(test_pred1, test_pred2)
|
||||
meta_score = abs(score - metrics.accuracy_score(test.y, test_pred))
|
||||
report.append_row(test.prevalence(), acc=meta_score, acc_score=score)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def logreg(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict",
|
||||
):
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
|
||||
val_preds = c_model_predict(validation.X)
|
||||
|
||||
report = EvaluationReport(name="logreg")
|
||||
for test in protocol():
|
||||
wx = iw.logreg(validation.X, validation.y, test.X)
|
||||
test_preds = c_model_predict(test.X)
|
||||
estim_acc = iw.get_acc(val_preds, validation.y, wx)
|
||||
true_acc = metrics.accuracy_score(test.y, test_preds)
|
||||
meta_score = abs(estim_acc - true_acc)
|
||||
report.append_row(test.prevalence(), acc=meta_score, acc_score=estim_acc)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@baseline
|
||||
def kdex2(
|
||||
c_model: BaseEstimator,
|
||||
validation: LabelledCollection,
|
||||
protocol: AbstractStochasticSeededProtocol,
|
||||
predict_method="predict",
|
||||
):
|
||||
c_model_predict = getattr(c_model, predict_method)
|
||||
|
||||
val_preds = c_model_predict(validation.X)
|
||||
log_likelihood_val = iw.kdex2_lltr(validation.X)
|
||||
Xval = validation.X.toarray() if issparse(validation.X) else validation.X
|
||||
|
||||
report = EvaluationReport(name="kdex2")
|
||||
for test in protocol():
|
||||
Xte = test.X.toarray() if issparse(test.X) else test.X
|
||||
wx = iw.kdex2_weights(Xval, Xte, log_likelihood_val)
|
||||
test_preds = c_model_predict(Xte)
|
||||
estim_acc = iw.get_acc(val_preds, validation.y, wx)
|
||||
true_acc = metrics.accuracy_score(test.y, test_preds)
|
||||
meta_score = abs(estim_acc - true_acc)
|
||||
report.append_row(test.prevalence(), acc=meta_score, acc_score=estim_acc)
|
||||
|
||||
return report
|
|
@ -0,0 +1,121 @@
|
|||
import os
|
||||
import time
|
||||
from traceback import print_exception as traceback
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import quapy as qp
|
||||
from joblib import Parallel, delayed
|
||||
from quapy.protocol import APP
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
from quacc import logger
|
||||
from quacc.dataset import Dataset
|
||||
from quacc.legacy.environment import env
|
||||
from quacc.legacy.evaluation.estimators import CE
|
||||
from quacc.legacy.evaluation.report import CompReport, DatasetReport
|
||||
from quacc.utils.commons import parallel
|
||||
|
||||
# from quacc.logger import logger, logger_manager
|
||||
|
||||
# from quacc.evaluation.worker import WorkerArgs, estimate_worker
|
||||
|
||||
pd.set_option("display.float_format", "{:.4f}".format)
|
||||
# qp.environ["SAMPLE_SIZE"] = env.SAMPLE_SIZE
|
||||
|
||||
|
||||
def estimate_worker(_estimate, train, validation, test, q=None):
|
||||
# qp.environ["SAMPLE_SIZE"] = env.SAMPLE_SIZE
|
||||
log = logger.setup_worker_logger(q)
|
||||
|
||||
model = LogisticRegression()
|
||||
|
||||
model.fit(*train.Xy)
|
||||
protocol = APP(
|
||||
test,
|
||||
n_prevalences=env.PROTOCOL_N_PREVS,
|
||||
repeats=env.PROTOCOL_REPEATS,
|
||||
return_type="labelled_collection",
|
||||
random_state=env._R_SEED,
|
||||
)
|
||||
start = time.time()
|
||||
try:
|
||||
result = _estimate(model, validation, protocol)
|
||||
except Exception as e:
|
||||
log.warning(f"Method {_estimate.name} failed. Exception: {e}")
|
||||
traceback(e)
|
||||
return None
|
||||
|
||||
result.time = time.time() - start
|
||||
log.info(f"{_estimate.name} finished [took {result.time:.4f}s]")
|
||||
|
||||
logger.logger_manager().rm_worker()
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def split_tasks(estimators, train, validation, test, q):
|
||||
_par, _seq = [], []
|
||||
for estim in estimators:
|
||||
if hasattr(estim, "nocall"):
|
||||
continue
|
||||
_task = [estim, train, validation, test]
|
||||
match estim.name:
|
||||
case n if n.endswith("_gs"):
|
||||
_seq.append(_task)
|
||||
case _:
|
||||
_par.append(_task + [q])
|
||||
|
||||
return _par, _seq
|
||||
|
||||
|
||||
def evaluate_comparison(dataset: Dataset, estimators=None) -> DatasetReport:
|
||||
# log = Logger.logger()
|
||||
log = logger.logger()
|
||||
# with multiprocessing.Pool(1) as pool:
|
||||
__pool_size = round(os.cpu_count() * 0.8)
|
||||
# with multiprocessing.Pool(__pool_size) as pool:
|
||||
dr = DatasetReport(dataset.name)
|
||||
log.info(f"dataset {dataset.name} [pool size: {__pool_size}]")
|
||||
for d in dataset():
|
||||
log.info(
|
||||
f"Dataset sample {np.around(d.train_prev, decimals=2)} "
|
||||
f"of dataset {dataset.name} started"
|
||||
)
|
||||
par_tasks, seq_tasks = split_tasks(
|
||||
CE.func[estimators],
|
||||
d.train,
|
||||
d.validation,
|
||||
d.test,
|
||||
logger.logger_manager().q,
|
||||
)
|
||||
try:
|
||||
tstart = time.time()
|
||||
results = parallel(estimate_worker, par_tasks, n_jobs=env.N_JOBS, _env=env)
|
||||
results += parallel(estimate_worker, seq_tasks, n_jobs=1, _env=env)
|
||||
results = [r for r in results if r is not None]
|
||||
|
||||
g_time = time.time() - tstart
|
||||
log.info(
|
||||
f"Dataset sample {np.around(d.train_prev, decimals=2)} "
|
||||
f"of dataset {dataset.name} finished "
|
||||
f"[took {g_time:.4f}s]"
|
||||
)
|
||||
|
||||
cr = CompReport(
|
||||
results,
|
||||
name=dataset.name,
|
||||
train_prev=d.train_prev,
|
||||
valid_prev=d.validation_prev,
|
||||
g_time=g_time,
|
||||
)
|
||||
dr += cr
|
||||
|
||||
except Exception as e:
|
||||
log.warning(
|
||||
f"Dataset sample {np.around(d.train_prev, decimals=2)} "
|
||||
f"of dataset {dataset.name} failed. "
|
||||
f"Exception: {e}"
|
||||
)
|
||||
traceback(e)
|
||||
return dr
|
|
@ -0,0 +1,112 @@
|
|||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from quacc.legacy.evaluation import alt, baseline, method
|
||||
|
||||
|
||||
class CompEstimatorFunc_:
|
||||
def __init__(self, ce):
|
||||
self.ce = ce
|
||||
|
||||
def __getitem__(self, e: str | List[str]):
|
||||
if isinstance(e, str):
|
||||
return list(self.ce._CompEstimator__get(e).values())[0]
|
||||
elif isinstance(e, list):
|
||||
return list(self.ce._CompEstimator__get(e).values())
|
||||
|
||||
|
||||
class CompEstimatorName_:
|
||||
def __init__(self, ce):
|
||||
self.ce = ce
|
||||
|
||||
def __getitem__(self, e: str | List[str]):
|
||||
if isinstance(e, str):
|
||||
return list(self.ce._CompEstimator__get(e).keys())[0]
|
||||
elif isinstance(e, list):
|
||||
return list(self.ce._CompEstimator__get(e).keys())
|
||||
|
||||
def sort(self, e: List[str]):
|
||||
return list(self.ce._CompEstimator__get(e, get_ref=False).keys())
|
||||
|
||||
@property
|
||||
def all(self):
|
||||
return list(self.ce._CompEstimator__get("__all").keys())
|
||||
|
||||
@property
|
||||
def baselines(self):
|
||||
return list(self.ce._CompEstimator__get("__baselines").keys())
|
||||
|
||||
|
||||
class CompEstimator:
|
||||
def __get(cls, e: str | List[str], get_ref=True):
|
||||
_dict = alt._alts | baseline._baselines | method._methods
|
||||
|
||||
if isinstance(e, str) and e == "__all":
|
||||
e = list(_dict.keys())
|
||||
if isinstance(e, str) and e == "__baselines":
|
||||
e = list(baseline._baselines.keys())
|
||||
|
||||
if isinstance(e, str):
|
||||
try:
|
||||
return {e: _dict[e]}
|
||||
except KeyError:
|
||||
raise KeyError(f"Invalid estimator: estimator {e} does not exist")
|
||||
elif isinstance(e, list) or isinstance(e, np.ndarray):
|
||||
_subtr = np.setdiff1d(e, list(_dict.keys()))
|
||||
if len(_subtr) > 0:
|
||||
raise KeyError(
|
||||
f"Invalid estimator: estimator {_subtr[0]} does not exist"
|
||||
)
|
||||
|
||||
e_fun = {k: fun for k, fun in _dict.items() if k in e}
|
||||
if get_ref and "ref" not in e:
|
||||
e_fun["ref"] = _dict["ref"]
|
||||
elif not get_ref and "ref" in e:
|
||||
del e_fun["ref"]
|
||||
|
||||
return e_fun
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return CompEstimatorName_(self)
|
||||
|
||||
@property
|
||||
def func(self):
|
||||
return CompEstimatorFunc_(self)
|
||||
|
||||
|
||||
CE = CompEstimator()
|
||||
|
||||
_renames = {
|
||||
"bin_sld_lr": "(2x2)_SLD_LR",
|
||||
"mul_sld_lr": "(1x4)_SLD_LR",
|
||||
"m3w_sld_lr": "(1x3)_SLD_LR",
|
||||
"d_bin_sld_lr": "d_(2x2)_SLD_LR",
|
||||
"d_mul_sld_lr": "d_(1x4)_SLD_LR",
|
||||
"d_m3w_sld_lr": "d_(1x3)_SLD_LR",
|
||||
"d_bin_sld_rbf": "(2x2)_SLD_RBF",
|
||||
"d_mul_sld_rbf": "(1x4)_SLD_RBF",
|
||||
"d_m3w_sld_rbf": "(1x3)_SLD_RBF",
|
||||
# "sld_lr_gs": "MS_SLD_LR",
|
||||
"sld_lr_gs": "QuAcc(SLD)",
|
||||
"bin_kde_lr": "(2x2)_KDEy_LR",
|
||||
"mul_kde_lr": "(1x4)_KDEy_LR",
|
||||
"m3w_kde_lr": "(1x3)_KDEy_LR",
|
||||
"d_bin_kde_lr": "d_(2x2)_KDEy_LR",
|
||||
"d_mul_kde_lr": "d_(1x4)_KDEy_LR",
|
||||
"d_m3w_kde_lr": "d_(1x3)_KDEy_LR",
|
||||
"bin_cc_lr": "(2x2)_CC_LR",
|
||||
"mul_cc_lr": "(1x4)_CC_LR",
|
||||
"m3w_cc_lr": "(1x3)_CC_LR",
|
||||
# "kde_lr_gs": "MS_KDEy_LR",
|
||||
"kde_lr_gs": "QuAcc(KDEy)",
|
||||
# "cc_lr_gs": "MS_CC_LR",
|
||||
"cc_lr_gs": "QuAcc(CC)",
|
||||
"atc_mc": "ATC",
|
||||
"doc": "DoC",
|
||||
"mandoline": "Mandoline",
|
||||
"rca": "RCA",
|
||||
"rca_star": "RCA*",
|
||||
"naive": "Naive",
|
||||
}
|
|
@ -0,0 +1,32 @@
|
|||
from typing import Callable, Union
|
||||
|
||||
from quapy.protocol import AbstractProtocol, OnLabelledCollectionProtocol
|
||||
|
||||
import quacc as qc
|
||||
from quacc.deprecated.method.base import BaseAccuracyEstimator
|
||||
|
||||
|
||||
def evaluate(
|
||||
estimator: BaseAccuracyEstimator,
|
||||
protocol: AbstractProtocol,
|
||||
error_metric: Union[Callable | str],
|
||||
) -> float:
|
||||
if isinstance(error_metric, str):
|
||||
error_metric = qc.error.from_name(error_metric)
|
||||
|
||||
collator_bck_ = protocol.collator
|
||||
protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection")
|
||||
|
||||
estim_prevs, true_prevs = [], []
|
||||
for sample in protocol():
|
||||
e_sample = estimator.extend(sample)
|
||||
estim_prev = estimator.estimate(e_sample.eX)
|
||||
estim_prevs.append(estim_prev)
|
||||
true_prevs.append(e_sample.e_prevalence())
|
||||
|
||||
protocol.collator = collator_bck_
|
||||
|
||||
# true_prevs = np.array(true_prevs)
|
||||
# estim_prevs = np.array(estim_prevs)
|
||||
|
||||
return error_metric(true_prevs, estim_prevs)
|
|
@ -0,0 +1,517 @@
|
|||
import traceback
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, List, Union
|
||||
|
||||
import numpy as np
|
||||
from matplotlib.pylab import rand
|
||||
from quapy.method.aggregative import CC, PACC, SLD, BaseQuantifier
|
||||
from quapy.protocol import UPP, AbstractProtocol, OnLabelledCollectionProtocol
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.svm import SVC, LinearSVC
|
||||
|
||||
import quacc as qc
|
||||
from quacc.deprecated.method.base import BQAE, MCAE, BaseAccuracyEstimator
|
||||
from quacc.deprecated.method.model_selection import (
|
||||
GridSearchAE,
|
||||
SpiderSearchAE,
|
||||
)
|
||||
from quacc.legacy.environment import env
|
||||
from quacc.legacy.evaluation.report import EvaluationReport
|
||||
from quacc.quantification import KDEy
|
||||
|
||||
|
||||
def _param_grid(method, X_fit: np.ndarray):
|
||||
match method:
|
||||
case "sld_lr":
|
||||
return {
|
||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||
"q__classifier__class_weight": [None, "balanced"],
|
||||
"q__recalib": [None, "bcts"],
|
||||
"confidence": [
|
||||
None,
|
||||
["isoft"],
|
||||
["max_conf", "entropy"],
|
||||
["max_conf", "entropy", "isoft"],
|
||||
],
|
||||
}
|
||||
case "sld_rbf":
|
||||
_scale = 1.0 / (X_fit.shape[1] * X_fit.var())
|
||||
return {
|
||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||
"q__classifier__class_weight": [None, "balanced"],
|
||||
"q__classifier__gamma": _scale * np.logspace(-2, 2, 5),
|
||||
"q__recalib": [None, "bcts"],
|
||||
"confidence": [
|
||||
None,
|
||||
["isoft"],
|
||||
["max_conf", "entropy"],
|
||||
["max_conf", "entropy", "isoft"],
|
||||
],
|
||||
}
|
||||
case "pacc":
|
||||
return {
|
||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||
"q__classifier__class_weight": [None, "balanced"],
|
||||
"confidence": [None, ["isoft"], ["max_conf", "entropy"]],
|
||||
}
|
||||
case "cc_lr":
|
||||
return {
|
||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||
"q__classifier__class_weight": [None, "balanced"],
|
||||
"confidence": [
|
||||
None,
|
||||
["isoft"],
|
||||
["max_conf", "entropy"],
|
||||
["max_conf", "entropy", "isoft"],
|
||||
],
|
||||
}
|
||||
case "kde_lr":
|
||||
return {
|
||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||
"q__classifier__class_weight": [None, "balanced"],
|
||||
"q__bandwidth": np.linspace(0.01, 0.2, 20),
|
||||
"confidence": [None, ["isoft"], ["max_conf", "entropy", "isoft"]],
|
||||
}
|
||||
case "kde_rbf":
|
||||
_scale = 1.0 / (X_fit.shape[1] * X_fit.var())
|
||||
return {
|
||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||
"q__classifier__class_weight": [None, "balanced"],
|
||||
"q__classifier__gamma": _scale * np.logspace(-2, 2, 5),
|
||||
"q__bandwidth": np.linspace(0.01, 0.2, 20),
|
||||
"confidence": [None, ["isoft"], ["max_conf", "entropy", "isoft"]],
|
||||
}
|
||||
|
||||
|
||||
def evaluation_report(
|
||||
estimator: BaseAccuracyEstimator, protocol: AbstractProtocol, method_name=None
|
||||
) -> EvaluationReport:
|
||||
# method_name = inspect.stack()[1].function
|
||||
report = EvaluationReport(name=method_name)
|
||||
for sample in protocol():
|
||||
try:
|
||||
e_sample = estimator.extend(sample)
|
||||
estim_prev = estimator.estimate(e_sample.eX)
|
||||
true_prev = e_sample.e_prevalence()
|
||||
acc_score = qc.error.acc(estim_prev)
|
||||
row = dict(
|
||||
acc_score=acc_score,
|
||||
acc=abs(qc.error.acc(true_prev) - acc_score),
|
||||
)
|
||||
if estim_prev.can_f1():
|
||||
f1_score = qc.error.f1(estim_prev)
|
||||
row = row | dict(
|
||||
f1_score=f1_score,
|
||||
f1=abs(qc.error.f1(true_prev) - f1_score),
|
||||
)
|
||||
report.append_row(sample.prevalence(), **row)
|
||||
except Exception as e:
|
||||
print(f"sample prediction failed for method {method_name}: {e}")
|
||||
traceback.print_exception(e)
|
||||
report.append_row(
|
||||
sample.prevalence(),
|
||||
acc_score=np.nan,
|
||||
acc=np.nan,
|
||||
f1_score=np.nan,
|
||||
f1=np.nan,
|
||||
)
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class EmptyMethod:
|
||||
name: str
|
||||
nocall: bool = True
|
||||
|
||||
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
|
||||
pass
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class EvaluationMethod:
|
||||
name: str
|
||||
q: BaseQuantifier
|
||||
est_n: str
|
||||
conf: List[str] | str = None
|
||||
cf: bool = False # collapse_false
|
||||
gf: bool = False # group_false
|
||||
d: bool = False # dense
|
||||
|
||||
def get_est(self, c_model):
|
||||
match self.est_n:
|
||||
case "mul":
|
||||
return MCAE(
|
||||
c_model,
|
||||
self.q,
|
||||
confidence=self.conf,
|
||||
collapse_false=self.cf,
|
||||
group_false=self.gf,
|
||||
dense=self.d,
|
||||
)
|
||||
case "bin":
|
||||
return BQAE(
|
||||
c_model,
|
||||
self.q,
|
||||
confidence=self.conf,
|
||||
group_false=self.gf,
|
||||
dense=self.d,
|
||||
)
|
||||
|
||||
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
|
||||
est = self.get_est(c_model).fit(validation)
|
||||
return evaluation_report(
|
||||
estimator=est, protocol=protocol, method_name=self.name
|
||||
)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class EvaluationMethodGridSearch(EvaluationMethod):
|
||||
pg: str = "sld"
|
||||
search: str = "grid"
|
||||
|
||||
def get_search(self):
|
||||
match self.search:
|
||||
case "grid":
|
||||
return (GridSearchAE, {})
|
||||
case "spider" | "spider2":
|
||||
return (SpiderSearchAE, dict(best_width=2))
|
||||
case "spider3":
|
||||
return (SpiderSearchAE, dict(best_width=3))
|
||||
case _:
|
||||
return GridSearchAE
|
||||
|
||||
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
|
||||
v_train, v_val = validation.split_stratified(0.6, random_state=env._R_SEED)
|
||||
_model = self.get_est(c_model)
|
||||
_grid = _param_grid(self.pg, X_fit=_model.extend(v_train, prefit=True).X)
|
||||
_search_class, _search_params = self.get_search()
|
||||
est = _search_class(
|
||||
model=_model,
|
||||
param_grid=_grid,
|
||||
refit=False,
|
||||
protocol=UPP(v_val, repeats=100),
|
||||
verbose=False,
|
||||
**_search_params,
|
||||
).fit(v_train)
|
||||
er = evaluation_report(
|
||||
estimator=est,
|
||||
protocol=protocol,
|
||||
method_name=self.name,
|
||||
)
|
||||
er.fit_score = est.best_score()
|
||||
return er
|
||||
|
||||
|
||||
E = EmptyMethod
|
||||
M = EvaluationMethod
|
||||
G = EvaluationMethodGridSearch
|
||||
|
||||
|
||||
def __sld_lr():
|
||||
return SLD(LogisticRegression())
|
||||
|
||||
|
||||
def __sld_rbf():
|
||||
return SLD(SVC(kernel="rbf", probability=True))
|
||||
|
||||
|
||||
def __kde_lr():
|
||||
return KDEy(LogisticRegression(), random_state=env._R_SEED)
|
||||
|
||||
|
||||
def __kde_rbf():
|
||||
return KDEy(SVC(kernel="rbf", probability=True), random_state=env._R_SEED)
|
||||
|
||||
|
||||
def __sld_lsvc():
|
||||
return SLD(LinearSVC())
|
||||
|
||||
|
||||
def __pacc_lr():
|
||||
return PACC(LogisticRegression())
|
||||
|
||||
|
||||
def __cc_lr():
|
||||
return CC(LogisticRegression())
|
||||
|
||||
|
||||
# fmt: off
|
||||
|
||||
__sld_lr_set = [
|
||||
M("bin_sld_lr", __sld_lr(), "bin" ),
|
||||
M("bgf_sld_lr", __sld_lr(), "bin", gf=True),
|
||||
M("mul_sld_lr", __sld_lr(), "mul" ),
|
||||
M("m3w_sld_lr", __sld_lr(), "mul", cf=True),
|
||||
M("mgf_sld_lr", __sld_lr(), "mul", gf=True),
|
||||
# max_conf sld
|
||||
M("bin_sld_lr_mc", __sld_lr(), "bin", conf="max_conf", ),
|
||||
M("bgf_sld_lr_mc", __sld_lr(), "bin", conf="max_conf", gf=True),
|
||||
M("mul_sld_lr_mc", __sld_lr(), "mul", conf="max_conf", ),
|
||||
M("m3w_sld_lr_mc", __sld_lr(), "mul", conf="max_conf", cf=True),
|
||||
M("mgf_sld_lr_mc", __sld_lr(), "mul", conf="max_conf", gf=True),
|
||||
# entropy sld
|
||||
M("bin_sld_lr_ne", __sld_lr(), "bin", conf="entropy", ),
|
||||
M("bgf_sld_lr_ne", __sld_lr(), "bin", conf="entropy", gf=True),
|
||||
M("mul_sld_lr_ne", __sld_lr(), "mul", conf="entropy", ),
|
||||
M("m3w_sld_lr_ne", __sld_lr(), "mul", conf="entropy", cf=True),
|
||||
M("mgf_sld_lr_ne", __sld_lr(), "mul", conf="entropy", gf=True),
|
||||
# inverse softmax sld
|
||||
M("bin_sld_lr_is", __sld_lr(), "bin", conf="isoft", ),
|
||||
M("bgf_sld_lr_is", __sld_lr(), "bin", conf="isoft", gf=True),
|
||||
M("mul_sld_lr_is", __sld_lr(), "mul", conf="isoft", ),
|
||||
M("m3w_sld_lr_is", __sld_lr(), "mul", conf="isoft", cf=True),
|
||||
M("mgf_sld_lr_is", __sld_lr(), "mul", conf="isoft", gf=True),
|
||||
# max_conf + entropy sld
|
||||
M("bin_sld_lr_c", __sld_lr(), "bin", conf=["max_conf", "entropy"] ),
|
||||
M("bgf_sld_lr_c", __sld_lr(), "bin", conf=["max_conf", "entropy"], gf=True),
|
||||
M("mul_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"] ),
|
||||
M("m3w_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
|
||||
M("mgf_sld_lr_c", __sld_lr(), "mul", conf=["max_conf", "entropy"], gf=True),
|
||||
# sld all
|
||||
M("bin_sld_lr_a", __sld_lr(), "bin", conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("bgf_sld_lr_a", __sld_lr(), "bin", conf=["max_conf", "entropy", "isoft"], gf=True),
|
||||
M("mul_sld_lr_a", __sld_lr(), "mul", conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("m3w_sld_lr_a", __sld_lr(), "mul", conf=["max_conf", "entropy", "isoft"], cf=True),
|
||||
M("mgf_sld_lr_a", __sld_lr(), "mul", conf=["max_conf", "entropy", "isoft"], gf=True),
|
||||
# gs sld
|
||||
G("bin_sld_lr_gs", __sld_lr(), "bin", pg="sld_lr" ),
|
||||
G("bgf_sld_lr_gs", __sld_lr(), "bin", pg="sld_lr", gf=True),
|
||||
G("mul_sld_lr_gs", __sld_lr(), "mul", pg="sld_lr" ),
|
||||
G("m3w_sld_lr_gs", __sld_lr(), "mul", pg="sld_lr", cf=True),
|
||||
G("mgf_sld_lr_gs", __sld_lr(), "mul", pg="sld_lr", gf=True),
|
||||
]
|
||||
|
||||
__dense_sld_lr_set = [
|
||||
M("d_bin_sld_lr", __sld_lr(), "bin", d=True, ),
|
||||
M("d_bgf_sld_lr", __sld_lr(), "bin", d=True, gf=True),
|
||||
M("d_mul_sld_lr", __sld_lr(), "mul", d=True, ),
|
||||
M("d_m3w_sld_lr", __sld_lr(), "mul", d=True, cf=True),
|
||||
M("d_mgf_sld_lr", __sld_lr(), "mul", d=True, gf=True),
|
||||
# max_conf sld
|
||||
M("d_bin_sld_lr_mc", __sld_lr(), "bin", d=True, conf="max_conf", ),
|
||||
M("d_bgf_sld_lr_mc", __sld_lr(), "bin", d=True, conf="max_conf", gf=True),
|
||||
M("d_mul_sld_lr_mc", __sld_lr(), "mul", d=True, conf="max_conf", ),
|
||||
M("d_m3w_sld_lr_mc", __sld_lr(), "mul", d=True, conf="max_conf", cf=True),
|
||||
M("d_mgf_sld_lr_mc", __sld_lr(), "mul", d=True, conf="max_conf", gf=True),
|
||||
# entropy sld
|
||||
M("d_bin_sld_lr_ne", __sld_lr(), "bin", d=True, conf="entropy", ),
|
||||
M("d_bgf_sld_lr_ne", __sld_lr(), "bin", d=True, conf="entropy", gf=True),
|
||||
M("d_mul_sld_lr_ne", __sld_lr(), "mul", d=True, conf="entropy", ),
|
||||
M("d_m3w_sld_lr_ne", __sld_lr(), "mul", d=True, conf="entropy", cf=True),
|
||||
M("d_mgf_sld_lr_ne", __sld_lr(), "mul", d=True, conf="entropy", gf=True),
|
||||
# inverse softmax sld
|
||||
M("d_bin_sld_lr_is", __sld_lr(), "bin", d=True, conf="isoft", ),
|
||||
M("d_bgf_sld_lr_is", __sld_lr(), "bin", d=True, conf="isoft", gf=True),
|
||||
M("d_mul_sld_lr_is", __sld_lr(), "mul", d=True, conf="isoft", ),
|
||||
M("d_m3w_sld_lr_is", __sld_lr(), "mul", d=True, conf="isoft", cf=True),
|
||||
M("d_mgf_sld_lr_is", __sld_lr(), "mul", d=True, conf="isoft", gf=True),
|
||||
# max_conf + entropy sld
|
||||
M("d_bin_sld_lr_c", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_bgf_sld_lr_c", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy"], gf=True),
|
||||
M("d_mul_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_m3w_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
|
||||
M("d_mgf_sld_lr_c", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy"], gf=True),
|
||||
# sld all
|
||||
M("d_bin_sld_lr_a", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_bgf_sld_lr_a", __sld_lr(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], gf=True),
|
||||
M("d_mul_sld_lr_a", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_m3w_sld_lr_a", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], cf=True),
|
||||
M("d_mgf_sld_lr_a", __sld_lr(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], gf=True),
|
||||
# gs sld
|
||||
G("d_bin_sld_lr_gs", __sld_lr(), "bin", d=True, pg="sld_lr" ),
|
||||
G("d_bgf_sld_lr_gs", __sld_lr(), "bin", d=True, pg="sld_lr", gf=True),
|
||||
G("d_mul_sld_lr_gs", __sld_lr(), "mul", d=True, pg="sld_lr" ),
|
||||
G("d_m3w_sld_lr_gs", __sld_lr(), "mul", d=True, pg="sld_lr", cf=True),
|
||||
G("d_mgf_sld_lr_gs", __sld_lr(), "mul", d=True, pg="sld_lr", gf=True),
|
||||
]
|
||||
|
||||
__dense_sld_rbf_set = [
|
||||
M("d_bin_sld_rbf", __sld_rbf(), "bin", d=True, ),
|
||||
M("d_bgf_sld_rbf", __sld_rbf(), "bin", d=True, gf=True),
|
||||
M("d_mul_sld_rbf", __sld_rbf(), "mul", d=True, ),
|
||||
M("d_m3w_sld_rbf", __sld_rbf(), "mul", d=True, cf=True),
|
||||
M("d_mgf_sld_rbf", __sld_rbf(), "mul", d=True, gf=True),
|
||||
# max_conf sld
|
||||
M("d_bin_sld_rbf_mc", __sld_rbf(), "bin", d=True, conf="max_conf", ),
|
||||
M("d_bgf_sld_rbf_mc", __sld_rbf(), "bin", d=True, conf="max_conf", gf=True),
|
||||
M("d_mul_sld_rbf_mc", __sld_rbf(), "mul", d=True, conf="max_conf", ),
|
||||
M("d_m3w_sld_rbf_mc", __sld_rbf(), "mul", d=True, conf="max_conf", cf=True),
|
||||
M("d_mgf_sld_rbf_mc", __sld_rbf(), "mul", d=True, conf="max_conf", gf=True),
|
||||
# entropy sld
|
||||
M("d_bin_sld_rbf_ne", __sld_rbf(), "bin", d=True, conf="entropy", ),
|
||||
M("d_bgf_sld_rbf_ne", __sld_rbf(), "bin", d=True, conf="entropy", gf=True),
|
||||
M("d_mul_sld_rbf_ne", __sld_rbf(), "mul", d=True, conf="entropy", ),
|
||||
M("d_m3w_sld_rbf_ne", __sld_rbf(), "mul", d=True, conf="entropy", cf=True),
|
||||
M("d_mgf_sld_rbf_ne", __sld_rbf(), "mul", d=True, conf="entropy", gf=True),
|
||||
# inverse softmax sld
|
||||
M("d_bin_sld_rbf_is", __sld_rbf(), "bin", d=True, conf="isoft", ),
|
||||
M("d_bgf_sld_rbf_is", __sld_rbf(), "bin", d=True, conf="isoft", gf=True),
|
||||
M("d_mul_sld_rbf_is", __sld_rbf(), "mul", d=True, conf="isoft", ),
|
||||
M("d_m3w_sld_rbf_is", __sld_rbf(), "mul", d=True, conf="isoft", cf=True),
|
||||
M("d_mgf_sld_rbf_is", __sld_rbf(), "mul", d=True, conf="isoft", gf=True),
|
||||
# max_conf + entropy sld
|
||||
M("d_bin_sld_rbf_c", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_bgf_sld_rbf_c", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy"], gf=True),
|
||||
M("d_mul_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_m3w_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
|
||||
M("d_mgf_sld_rbf_c", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy"], gf=True),
|
||||
# sld all
|
||||
M("d_bin_sld_rbf_a", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_bgf_sld_rbf_a", __sld_rbf(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], gf=True),
|
||||
M("d_mul_sld_rbf_a", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_m3w_sld_rbf_a", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], cf=True),
|
||||
M("d_mgf_sld_rbf_a", __sld_rbf(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], gf=True),
|
||||
# gs sld
|
||||
G("d_bin_sld_rbf_gs", __sld_rbf(), "bin", d=True, pg="sld_rbf", search="grid", ),
|
||||
G("d_bgf_sld_rbf_gs", __sld_rbf(), "bin", d=True, pg="sld_rbf", search="grid", gf=True),
|
||||
G("d_mul_sld_rbf_gs", __sld_rbf(), "mul", d=True, pg="sld_rbf", search="grid", ),
|
||||
G("d_m3w_sld_rbf_gs", __sld_rbf(), "mul", d=True, pg="sld_rbf", search="grid", cf=True),
|
||||
G("d_mgf_sld_rbf_gs", __sld_rbf(), "mul", d=True, pg="sld_rbf", search="grid", gf=True),
|
||||
]
|
||||
|
||||
__kde_lr_set = [
|
||||
# base kde
|
||||
M("bin_kde_lr", __kde_lr(), "bin" ),
|
||||
M("mul_kde_lr", __kde_lr(), "mul" ),
|
||||
M("m3w_kde_lr", __kde_lr(), "mul", cf=True),
|
||||
# max_conf kde
|
||||
M("bin_kde_lr_mc", __kde_lr(), "bin", conf="max_conf", ),
|
||||
M("mul_kde_lr_mc", __kde_lr(), "mul", conf="max_conf", ),
|
||||
M("m3w_kde_lr_mc", __kde_lr(), "mul", conf="max_conf", cf=True),
|
||||
# entropy kde
|
||||
M("bin_kde_lr_ne", __kde_lr(), "bin", conf="entropy", ),
|
||||
M("mul_kde_lr_ne", __kde_lr(), "mul", conf="entropy", ),
|
||||
M("m3w_kde_lr_ne", __kde_lr(), "mul", conf="entropy", cf=True),
|
||||
# inverse softmax kde
|
||||
M("bin_kde_lr_is", __kde_lr(), "bin", conf="isoft", ),
|
||||
M("mul_kde_lr_is", __kde_lr(), "mul", conf="isoft", ),
|
||||
M("m3w_kde_lr_is", __kde_lr(), "mul", conf="isoft", cf=True),
|
||||
# max_conf + entropy kde
|
||||
M("bin_kde_lr_c", __kde_lr(), "bin", conf=["max_conf", "entropy"] ),
|
||||
M("mul_kde_lr_c", __kde_lr(), "mul", conf=["max_conf", "entropy"] ),
|
||||
M("m3w_kde_lr_c", __kde_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
|
||||
# kde all
|
||||
M("bin_kde_lr_a", __kde_lr(), "bin", conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("mul_kde_lr_a", __kde_lr(), "mul", conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("m3w_kde_lr_a", __kde_lr(), "mul", conf=["max_conf", "entropy", "isoft"], cf=True),
|
||||
# gs kde
|
||||
G("bin_kde_lr_gs", __kde_lr(), "bin", pg="kde_lr", search="grid" ),
|
||||
G("mul_kde_lr_gs", __kde_lr(), "mul", pg="kde_lr", search="grid" ),
|
||||
G("m3w_kde_lr_gs", __kde_lr(), "mul", pg="kde_lr", search="grid", cf=True),
|
||||
]
|
||||
|
||||
__dense_kde_lr_set = [
|
||||
# base kde
|
||||
M("d_bin_kde_lr", __kde_lr(), "bin", d=True, ),
|
||||
M("d_mul_kde_lr", __kde_lr(), "mul", d=True, ),
|
||||
M("d_m3w_kde_lr", __kde_lr(), "mul", d=True, cf=True),
|
||||
# max_conf kde
|
||||
M("d_bin_kde_lr_mc", __kde_lr(), "bin", d=True, conf="max_conf", ),
|
||||
M("d_mul_kde_lr_mc", __kde_lr(), "mul", d=True, conf="max_conf", ),
|
||||
M("d_m3w_kde_lr_mc", __kde_lr(), "mul", d=True, conf="max_conf", cf=True),
|
||||
# entropy kde
|
||||
M("d_bin_kde_lr_ne", __kde_lr(), "bin", d=True, conf="entropy", ),
|
||||
M("d_mul_kde_lr_ne", __kde_lr(), "mul", d=True, conf="entropy", ),
|
||||
M("d_m3w_kde_lr_ne", __kde_lr(), "mul", d=True, conf="entropy", cf=True),
|
||||
# inverse softmax kde d=True,
|
||||
M("d_bin_kde_lr_is", __kde_lr(), "bin", d=True, conf="isoft", ),
|
||||
M("d_mul_kde_lr_is", __kde_lr(), "mul", d=True, conf="isoft", ),
|
||||
M("d_m3w_kde_lr_is", __kde_lr(), "mul", d=True, conf="isoft", cf=True),
|
||||
# max_conf + entropy kde
|
||||
M("d_bin_kde_lr_c", __kde_lr(), "bin", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_mul_kde_lr_c", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_m3w_kde_lr_c", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
|
||||
# kde all
|
||||
M("d_bin_kde_lr_a", __kde_lr(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_mul_kde_lr_a", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_m3w_kde_lr_a", __kde_lr(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], cf=True),
|
||||
# gs kde
|
||||
G("d_bin_kde_lr_gs", __kde_lr(), "bin", d=True, pg="kde_lr", search="grid" ),
|
||||
G("d_mul_kde_lr_gs", __kde_lr(), "mul", d=True, pg="kde_lr", search="grid" ),
|
||||
G("d_m3w_kde_lr_gs", __kde_lr(), "mul", d=True, pg="kde_lr", search="grid", cf=True),
|
||||
]
|
||||
|
||||
__dense_kde_rbf_set = [
|
||||
# base kde
|
||||
M("d_bin_kde_rbf", __kde_rbf(), "bin", d=True, ),
|
||||
M("d_mul_kde_rbf", __kde_rbf(), "mul", d=True, ),
|
||||
M("d_m3w_kde_rbf", __kde_rbf(), "mul", d=True, cf=True),
|
||||
# max_conf kde
|
||||
M("d_bin_kde_rbf_mc", __kde_rbf(), "bin", d=True, conf="max_conf", ),
|
||||
M("d_mul_kde_rbf_mc", __kde_rbf(), "mul", d=True, conf="max_conf", ),
|
||||
M("d_m3w_kde_rbf_mc", __kde_rbf(), "mul", d=True, conf="max_conf", cf=True),
|
||||
# entropy kde
|
||||
M("d_bin_kde_rbf_ne", __kde_rbf(), "bin", d=True, conf="entropy", ),
|
||||
M("d_mul_kde_rbf_ne", __kde_rbf(), "mul", d=True, conf="entropy", ),
|
||||
M("d_m3w_kde_rbf_ne", __kde_rbf(), "mul", d=True, conf="entropy", cf=True),
|
||||
# inverse softmax kde
|
||||
M("d_bin_kde_rbf_is", __kde_rbf(), "bin", d=True, conf="isoft", ),
|
||||
M("d_mul_kde_rbf_is", __kde_rbf(), "mul", d=True, conf="isoft", ),
|
||||
M("d_m3w_kde_rbf_is", __kde_rbf(), "mul", d=True, conf="isoft", cf=True),
|
||||
# max_conf + entropy kde
|
||||
M("d_bin_kde_rbf_c", __kde_rbf(), "bin", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_mul_kde_rbf_c", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy"] ),
|
||||
M("d_m3w_kde_rbf_c", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy"], cf=True),
|
||||
# kde all
|
||||
M("d_bin_kde_rbf_a", __kde_rbf(), "bin", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_mul_kde_rbf_a", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("d_m3w_kde_rbf_a", __kde_rbf(), "mul", d=True, conf=["max_conf", "entropy", "isoft"], cf=True),
|
||||
# gs kde
|
||||
G("d_bin_kde_rbf_gs", __kde_rbf(), "bin", d=True, pg="kde_rbf", search="spider" ),
|
||||
G("d_mul_kde_rbf_gs", __kde_rbf(), "mul", d=True, pg="kde_rbf", search="spider" ),
|
||||
G("d_m3w_kde_rbf_gs", __kde_rbf(), "mul", d=True, pg="kde_rbf", search="spider", cf=True),
|
||||
]
|
||||
|
||||
__cc_lr_set = [
|
||||
# base cc
|
||||
M("bin_cc_lr", __cc_lr(), "bin" ),
|
||||
M("mul_cc_lr", __cc_lr(), "mul" ),
|
||||
M("m3w_cc_lr", __cc_lr(), "mul", cf=True),
|
||||
# max_conf cc
|
||||
M("bin_cc_lr_mc", __cc_lr(), "bin", conf="max_conf", ),
|
||||
M("mul_cc_lr_mc", __cc_lr(), "mul", conf="max_conf", ),
|
||||
M("m3w_cc_lr_mc", __cc_lr(), "mul", conf="max_conf", cf=True),
|
||||
# entropy cc
|
||||
M("bin_cc_lr_ne", __cc_lr(), "bin", conf="entropy", ),
|
||||
M("mul_cc_lr_ne", __cc_lr(), "mul", conf="entropy", ),
|
||||
M("m3w_cc_lr_ne", __cc_lr(), "mul", conf="entropy", cf=True),
|
||||
# inverse softmax cc
|
||||
M("bin_cc_lr_is", __cc_lr(), "bin", conf="isoft", ),
|
||||
M("mul_cc_lr_is", __cc_lr(), "mul", conf="isoft", ),
|
||||
M("m3w_cc_lr_is", __cc_lr(), "mul", conf="isoft", cf=True),
|
||||
# max_conf + entropy cc
|
||||
M("bin_cc_lr_c", __cc_lr(), "bin", conf=["max_conf", "entropy"] ),
|
||||
M("mul_cc_lr_c", __cc_lr(), "mul", conf=["max_conf", "entropy"] ),
|
||||
M("m3w_cc_lr_c", __cc_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
|
||||
# cc all
|
||||
M("bin_cc_lr_a", __cc_lr(), "bin", conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("mul_cc_lr_a", __cc_lr(), "mul", conf=["max_conf", "entropy", "isoft"], ),
|
||||
M("m3w_cc_lr_a", __cc_lr(), "mul", conf=["max_conf", "entropy", "isoft"], cf=True),
|
||||
# gs cc
|
||||
G("bin_cc_lr_gs", __cc_lr(), "bin", pg="cc_lr", search="grid" ),
|
||||
G("mul_cc_lr_gs", __cc_lr(), "mul", pg="cc_lr", search="grid" ),
|
||||
G("m3w_cc_lr_gs", __cc_lr(), "mul", pg="cc_lr", search="grid", cf=True),
|
||||
]
|
||||
|
||||
__ms_set = [
|
||||
E("cc_lr_gs"),
|
||||
E("sld_lr_gs"),
|
||||
E("kde_lr_gs"),
|
||||
E("QuAcc"),
|
||||
]
|
||||
|
||||
# fmt: on
|
||||
|
||||
__methods_set = (
|
||||
__sld_lr_set
|
||||
+ __dense_sld_lr_set
|
||||
+ __dense_sld_rbf_set
|
||||
+ __kde_lr_set
|
||||
+ __dense_kde_lr_set
|
||||
+ __dense_kde_rbf_set
|
||||
+ __cc_lr_set
|
||||
+ __ms_set
|
||||
)
|
||||
|
||||
_methods = {m.name: m for m in __methods_set}
|
|
@ -0,0 +1,956 @@
|
|||
import json
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
import quacc as qc
|
||||
import quacc.plot as plot
|
||||
from quacc.utils.commons import fmt_line_md
|
||||
|
||||
|
||||
def _get_metric(metric: str):
|
||||
return slice(None) if metric is None else metric
|
||||
|
||||
|
||||
def _get_estimators(estimators: List[str], cols: np.ndarray):
|
||||
if estimators is None:
|
||||
return slice(None)
|
||||
|
||||
estimators = np.array(estimators)
|
||||
return estimators[np.isin(estimators, cols)]
|
||||
|
||||
|
||||
def _get_shift(index: np.ndarray, train_prev: np.ndarray):
|
||||
index = np.array([np.array(tp) for tp in index])
|
||||
train_prevs = np.tile(train_prev, (index.shape[0], 1))
|
||||
# assert index.shape[1] == train_prev.shape[0], "Mismatch in prevalence shape"
|
||||
# _shift = np.abs(index - train_prev)[:, 1:].sum(axis=1)
|
||||
_shift = qc.error.nae(index, train_prevs)
|
||||
return np.around(_shift, decimals=2)
|
||||
|
||||
|
||||
class EvaluationReport:
|
||||
def __init__(self, name=None):
|
||||
self.data: pd.DataFrame | None = None
|
||||
self.name = name if name is not None else "default"
|
||||
self.time = 0.0
|
||||
self.fit_score = None
|
||||
|
||||
def append_row(self, basep: np.ndarray | Tuple, **row):
|
||||
# bp = basep[1]
|
||||
bp = tuple(basep)
|
||||
_keys, _values = zip(*row.items())
|
||||
# _keys = list(row.keys())
|
||||
# _values = list(row.values())
|
||||
|
||||
if self.data is None:
|
||||
_idx = 0
|
||||
self.data = pd.DataFrame(
|
||||
{k: [v] for k, v in row.items()},
|
||||
index=pd.MultiIndex.from_tuples([(bp, _idx)]),
|
||||
columns=_keys,
|
||||
)
|
||||
return
|
||||
|
||||
_idx = len(self.data.loc[(bp,), :]) if (bp,) in self.data.index else 0
|
||||
not_in_data = np.setdiff1d(list(row.keys()), self.data.columns.unique(0))
|
||||
self.data.loc[:, not_in_data] = np.nan
|
||||
self.data.loc[(bp, _idx), :] = row
|
||||
return
|
||||
|
||||
@property
|
||||
def columns(self) -> np.ndarray:
|
||||
return self.data.columns.unique(0)
|
||||
|
||||
@property
|
||||
def prevs(self):
|
||||
return np.sort(self.data.index.unique(0))
|
||||
|
||||
|
||||
class CompReport:
|
||||
_default_modes = [
|
||||
"delta_train",
|
||||
"stdev_train",
|
||||
"train_table",
|
||||
"shift",
|
||||
"shift_table",
|
||||
"diagonal",
|
||||
"stats_table",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
datas: List[EvaluationReport] | pd.DataFrame,
|
||||
name="default",
|
||||
train_prev: np.ndarray = None,
|
||||
valid_prev: np.ndarray = None,
|
||||
times=None,
|
||||
fit_scores=None,
|
||||
g_time=None,
|
||||
):
|
||||
if isinstance(datas, pd.DataFrame):
|
||||
self._data: pd.DataFrame = datas
|
||||
else:
|
||||
self._data: pd.DataFrame = (
|
||||
pd.concat(
|
||||
[er.data for er in datas],
|
||||
keys=[er.name for er in datas],
|
||||
axis=1,
|
||||
)
|
||||
.swaplevel(0, 1, axis=1)
|
||||
.sort_index(axis=1, level=0, sort_remaining=False)
|
||||
.sort_index(axis=0, level=0, ascending=False, sort_remaining=False)
|
||||
)
|
||||
|
||||
if fit_scores is None:
|
||||
self.fit_scores = {
|
||||
er.name: er.fit_score for er in datas if er.fit_score is not None
|
||||
}
|
||||
else:
|
||||
self.fit_scores = fit_scores
|
||||
|
||||
if times is None:
|
||||
self.times = {er.name: er.time for er in datas}
|
||||
else:
|
||||
self.times = times
|
||||
|
||||
self.times["tot"] = g_time if g_time is not None else 0.0
|
||||
self.train_prev = train_prev
|
||||
self.valid_prev = valid_prev
|
||||
|
||||
def postprocess(
|
||||
self,
|
||||
f_data: pd.DataFrame,
|
||||
_data: pd.DataFrame,
|
||||
metric=None,
|
||||
estimators=None,
|
||||
) -> pd.DataFrame:
|
||||
_mapping = {
|
||||
"sld_lr_gs": [
|
||||
"bin_sld_lr_gs",
|
||||
"mul_sld_lr_gs",
|
||||
"m3w_sld_lr_gs",
|
||||
],
|
||||
"kde_lr_gs": [
|
||||
"bin_kde_lr_gs",
|
||||
"mul_kde_lr_gs",
|
||||
"m3w_kde_lr_gs",
|
||||
],
|
||||
"cc_lr_gs": [
|
||||
"bin_cc_lr_gs",
|
||||
"mul_cc_lr_gs",
|
||||
"m3w_cc_lr_gs",
|
||||
],
|
||||
"QuAcc": [
|
||||
"bin_sld_lr_gs",
|
||||
"mul_sld_lr_gs",
|
||||
"m3w_sld_lr_gs",
|
||||
"bin_kde_lr_gs",
|
||||
"mul_kde_lr_gs",
|
||||
"m3w_kde_lr_gs",
|
||||
],
|
||||
}
|
||||
|
||||
for name, methods in _mapping.items():
|
||||
if estimators is not None and name not in estimators:
|
||||
continue
|
||||
|
||||
available_idx = np.where(np.in1d(methods, self._data.columns.unique(1)))[0]
|
||||
if len(available_idx) == 0:
|
||||
continue
|
||||
methods = np.array(methods)[available_idx]
|
||||
|
||||
_metric = _get_metric(metric)
|
||||
m_data = _data.loc[:, (_metric, methods)]
|
||||
_fit_scores = [(k, v) for (k, v) in self.fit_scores.items() if k in methods]
|
||||
_best_method = [k for k, v in _fit_scores][
|
||||
np.argmin([v for k, v in _fit_scores])
|
||||
]
|
||||
_metric = (
|
||||
[_metric]
|
||||
if _metric is isinstance(_metric, str)
|
||||
else m_data.columns.unique(0)
|
||||
)
|
||||
for _m in _metric:
|
||||
f_data.loc[:, (_m, name)] = m_data.loc[:, (_m, _best_method)]
|
||||
|
||||
return f_data
|
||||
|
||||
@property
|
||||
def prevs(self) -> np.ndarray:
|
||||
return self.data().index.unique(0)
|
||||
|
||||
def join(self, other, how="update", estimators=None):
|
||||
if how not in ["update"]:
|
||||
how = "update"
|
||||
|
||||
if not (self.train_prev == other.train_prev).all():
|
||||
raise ValueError(
|
||||
f"self has train prev. {self.train_prev} while other has {other.train_prev}"
|
||||
)
|
||||
|
||||
self_data = self.data(estimators=estimators)
|
||||
other_data = other.data(estimators=estimators)
|
||||
|
||||
if not (self_data.index == other_data.index).all():
|
||||
raise ValueError("self and other have different indexes")
|
||||
|
||||
update_col = self_data.columns.intersection(other_data.columns)
|
||||
other_join_col = other_data.columns.difference(update_col)
|
||||
|
||||
_join = pd.concat(
|
||||
[self_data, other_data.loc[:, other_join_col.to_list()]],
|
||||
axis=1,
|
||||
)
|
||||
_join.loc[:, update_col.to_list()] = other_data.loc[:, update_col.to_list()]
|
||||
_join.sort_index(axis=1, level=0, sort_remaining=False, inplace=True)
|
||||
|
||||
df = CompReport(
|
||||
_join,
|
||||
self.name if hasattr(self, "name") else "default",
|
||||
train_prev=self.train_prev,
|
||||
valid_prev=self.valid_prev,
|
||||
times=self.times | other.times,
|
||||
fit_scores=self.fit_scores | other.fit_scores,
|
||||
g_time=self.times["tot"] + other.times["tot"],
|
||||
)
|
||||
|
||||
return df
|
||||
|
||||
def data(self, metric: str = None, estimators: List[str] = None) -> pd.DataFrame:
|
||||
_metric = _get_metric(metric)
|
||||
_estimators = _get_estimators(
|
||||
estimators, self._data.loc[:, (_metric, slice(None))].columns.unique(1)
|
||||
)
|
||||
_data: pd.DataFrame = self._data.copy()
|
||||
f_data: pd.DataFrame = _data.loc[:, (_metric, _estimators)]
|
||||
|
||||
f_data = self.postprocess(f_data, _data, metric=metric, estimators=estimators)
|
||||
|
||||
if len(f_data.columns.unique(0)) == 1:
|
||||
f_data = f_data.droplevel(level=0, axis=1)
|
||||
|
||||
return f_data
|
||||
|
||||
def shift_data(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
shift_idx_0 = _get_shift(
|
||||
self._data.index.get_level_values(0).to_numpy(),
|
||||
self.train_prev,
|
||||
)
|
||||
|
||||
shift_idx_1 = np.zeros(shape=shift_idx_0.shape[0], dtype="<i4")
|
||||
for _id in np.unique(shift_idx_0):
|
||||
_wh = (shift_idx_0 == _id).nonzero()[0]
|
||||
shift_idx_1[_wh] = np.arange(_wh.shape[0], dtype="<i4")
|
||||
|
||||
shift_data = self._data.copy()
|
||||
shift_data.index = pd.MultiIndex.from_arrays([shift_idx_0, shift_idx_1])
|
||||
shift_data = shift_data.sort_index(axis=0, level=0)
|
||||
|
||||
_metric = _get_metric(metric)
|
||||
_estimators = _get_estimators(
|
||||
estimators, shift_data.loc[:, (_metric, slice(None))].columns.unique(1)
|
||||
)
|
||||
s_data: pd.DataFrame = shift_data
|
||||
shift_data: pd.DataFrame = shift_data.loc[:, (_metric, _estimators)]
|
||||
shift_data = self.postprocess(
|
||||
shift_data, s_data, metric=metric, estimators=estimators
|
||||
)
|
||||
|
||||
if len(shift_data.columns.unique(0)) == 1:
|
||||
shift_data = shift_data.droplevel(level=0, axis=1)
|
||||
|
||||
return shift_data
|
||||
|
||||
def avg_by_prevs(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
f_dict = self.data(metric=metric, estimators=estimators)
|
||||
return f_dict.groupby(level=0, sort=False).mean()
|
||||
|
||||
def stdev_by_prevs(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
f_dict = self.data(metric=metric, estimators=estimators)
|
||||
return f_dict.groupby(level=0, sort=False).std()
|
||||
|
||||
def train_table(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
f_data = self.data(metric=metric, estimators=estimators)
|
||||
avg_p = f_data.groupby(level=0, sort=False).mean()
|
||||
avg_p.loc["mean", :] = f_data.mean()
|
||||
return avg_p
|
||||
|
||||
def shift_table(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
f_data = self.shift_data(metric=metric, estimators=estimators)
|
||||
avg_p = f_data.groupby(level=0, sort=False).mean()
|
||||
avg_p.loc["mean", :] = f_data.mean()
|
||||
return avg_p
|
||||
|
||||
def get_plots(
|
||||
self,
|
||||
mode="delta_train",
|
||||
metric="acc",
|
||||
estimators=None,
|
||||
conf="default",
|
||||
save_fig=True,
|
||||
base_path=None,
|
||||
backend=None,
|
||||
) -> List[Tuple[str, Path]]:
|
||||
if mode == "delta_train":
|
||||
avg_data = self.avg_by_prevs(metric=metric, estimators=estimators)
|
||||
if avg_data.empty:
|
||||
return None
|
||||
|
||||
return plot.plot_delta(
|
||||
base_prevs=self.prevs,
|
||||
columns=avg_data.columns.to_numpy(),
|
||||
data=avg_data.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=self.train_prev,
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "stdev_train":
|
||||
avg_data = self.avg_by_prevs(metric=metric, estimators=estimators)
|
||||
if avg_data.empty is True:
|
||||
return None
|
||||
|
||||
st_data = self.stdev_by_prevs(metric=metric, estimators=estimators)
|
||||
return plot.plot_delta(
|
||||
base_prevs=self.prevs,
|
||||
columns=avg_data.columns.to_numpy(),
|
||||
data=avg_data.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=self.train_prev,
|
||||
stdevs=st_data.T.to_numpy(),
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "diagonal":
|
||||
f_data = self.data(metric=metric + "_score", estimators=estimators)
|
||||
if f_data.empty is True:
|
||||
return None
|
||||
|
||||
ref: pd.Series = f_data.loc[:, "ref"]
|
||||
f_data.drop(columns=["ref"], inplace=True)
|
||||
return plot.plot_diagonal(
|
||||
reference=ref.to_numpy(),
|
||||
columns=f_data.columns.to_numpy(),
|
||||
data=f_data.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=self.train_prev,
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "shift":
|
||||
_shift_data = self.shift_data(metric=metric, estimators=estimators)
|
||||
if _shift_data.empty is True:
|
||||
return None
|
||||
|
||||
shift_avg = _shift_data.groupby(level=0, sort=False).mean()
|
||||
shift_counts = _shift_data.groupby(level=0, sort=False).count()
|
||||
shift_prevs = shift_avg.index.unique(0)
|
||||
# shift_prevs = np.around(
|
||||
# [(1.0 - p, p) for p in np.sort(shift_avg.index.unique(0))],
|
||||
# decimals=2,
|
||||
# )
|
||||
return plot.plot_shift(
|
||||
shift_prevs=shift_prevs,
|
||||
columns=shift_avg.columns.to_numpy(),
|
||||
data=shift_avg.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=self.train_prev,
|
||||
counts=shift_counts.T.to_numpy(),
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
|
||||
def to_md(
|
||||
self,
|
||||
conf="default",
|
||||
metric="acc",
|
||||
estimators=None,
|
||||
modes=_default_modes,
|
||||
plot_path=None,
|
||||
) -> str:
|
||||
res = f"## {int(np.around(self.train_prev, decimals=2)[1]*100)}% positives\n"
|
||||
res += fmt_line_md(f"train: {str(self.train_prev)}")
|
||||
res += fmt_line_md(f"validation: {str(self.valid_prev)}")
|
||||
for k, v in self.times.items():
|
||||
if estimators is not None and k not in estimators:
|
||||
continue
|
||||
res += fmt_line_md(f"{k}: {v:.3f}s")
|
||||
res += "\n"
|
||||
if "train_table" in modes:
|
||||
res += "### table\n"
|
||||
res += (
|
||||
self.train_table(metric=metric, estimators=estimators).to_html()
|
||||
+ "\n\n"
|
||||
)
|
||||
if "shift_table" in modes:
|
||||
res += "### shift table\n"
|
||||
res += (
|
||||
self.shift_table(metric=metric, estimators=estimators).to_html()
|
||||
+ "\n\n"
|
||||
)
|
||||
|
||||
plot_modes = [m for m in modes if not m.endswith("table")]
|
||||
for mode in plot_modes:
|
||||
res += f"### {mode}\n"
|
||||
_, op = self.get_plots(
|
||||
mode=mode,
|
||||
metric=metric,
|
||||
estimators=estimators,
|
||||
conf=conf,
|
||||
save_fig=True,
|
||||
base_path=plot_path,
|
||||
)
|
||||
res += f".as_posix()})\n"
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def _cr_train_prev(cr: CompReport):
|
||||
return tuple(np.around(cr.train_prev, decimals=2))
|
||||
|
||||
|
||||
def _cr_data(cr: CompReport, metric=None, estimators=None):
|
||||
return cr.data(metric, estimators)
|
||||
|
||||
|
||||
def _key_reverse_delta_train(idx):
|
||||
idx = idx.to_numpy()
|
||||
sorted_idx = np.array(
|
||||
sorted(list(idx), key=lambda x: x[-1]), dtype=("float," * len(idx[0]))[:-1]
|
||||
)
|
||||
# get sorting index
|
||||
nparr = np.nonzero(idx[:, None] == sorted_idx)[1]
|
||||
return nparr
|
||||
|
||||
|
||||
class DatasetReport:
|
||||
_default_dr_modes = [
|
||||
"delta_train",
|
||||
"stdev_train",
|
||||
"train_table",
|
||||
"train_std_table",
|
||||
"shift",
|
||||
"shift_table",
|
||||
"delta_test",
|
||||
"stdev_test",
|
||||
"test_table",
|
||||
"diagonal",
|
||||
"stats_table",
|
||||
"fit_scores",
|
||||
]
|
||||
_default_cr_modes = CompReport._default_modes
|
||||
|
||||
def __init__(self, name, crs=None):
|
||||
self.name = name
|
||||
self.crs: List[CompReport] = [] if crs is None else crs
|
||||
|
||||
def sort_delta_train_index(self, data):
|
||||
# data_ = data.sort_index(axis=0, level=0, ascending=True, sort_remaining=False)
|
||||
data_ = data.sort_index(
|
||||
axis=0,
|
||||
level=0,
|
||||
key=_key_reverse_delta_train,
|
||||
)
|
||||
print(data_.index)
|
||||
return data_
|
||||
|
||||
def join(self, other, estimators=None):
|
||||
_crs = [
|
||||
s_cr.join(o_cr, estimators=estimators)
|
||||
for s_cr, o_cr in zip(self.crs, other.crs)
|
||||
]
|
||||
|
||||
return DatasetReport(self.name, _crs)
|
||||
|
||||
def fit_scores(self, metric: str = None, estimators: List[str] = None):
|
||||
def _get_sort_idx(arr):
|
||||
return np.array([np.searchsorted(np.sort(a), a) + 1 for a in arr])
|
||||
|
||||
def _get_best_idx(arr):
|
||||
return np.argmin(arr, axis=1)
|
||||
|
||||
def _fdata_idx(idx) -> np.ndarray:
|
||||
return _fdata.loc[(idx, slice(None), slice(None)), :].to_numpy()
|
||||
|
||||
_crs_train = [_cr_train_prev(cr) for cr in self.crs]
|
||||
|
||||
for cr in self.crs:
|
||||
if not hasattr(cr, "fit_scores"):
|
||||
return None
|
||||
|
||||
_crs_fit_scores = [cr.fit_scores for cr in self.crs]
|
||||
|
||||
_fit_scores = pd.DataFrame(_crs_fit_scores, index=_crs_train)
|
||||
_fit_scores = _fit_scores.sort_index(axis=0, ascending=False)
|
||||
|
||||
_estimators = _get_estimators(estimators, _fit_scores.columns)
|
||||
if _estimators.shape[0] == 0:
|
||||
return None
|
||||
|
||||
_fdata = self.data(metric=metric, estimators=_estimators)
|
||||
|
||||
# ensure that columns in _fit_scores have the same ordering of _fdata
|
||||
_fit_scores = _fit_scores.loc[:, _fdata.columns]
|
||||
|
||||
_best_fit_estimators = _get_best_idx(_fit_scores.to_numpy())
|
||||
|
||||
# scores = np.array(
|
||||
# [
|
||||
# _get_sort_idx(
|
||||
# _fdata.loc[(idx, slice(None), slice(None)), :].to_numpy()
|
||||
# )[:, cl].mean()
|
||||
# for idx, cl in zip(_fit_scores.index, _best_fit_estimators)
|
||||
# ]
|
||||
# )
|
||||
# for idx, cl in zip(_fit_scores.index, _best_fit_estimators):
|
||||
# print(_fdata_idx(idx)[:, cl])
|
||||
# print(_fdata_idx(idx).min(axis=1), end="\n\n")
|
||||
|
||||
scores = np.array(
|
||||
[
|
||||
np.abs(_fdata_idx(idx)[:, cl] - _fdata_idx(idx).min(axis=1)).mean()
|
||||
for idx, cl in zip(_fit_scores.index, _best_fit_estimators)
|
||||
]
|
||||
)
|
||||
|
||||
return scores
|
||||
|
||||
def data(self, metric: str = None, estimators: List[str] = None) -> pd.DataFrame:
|
||||
_crs_sorted = sorted(
|
||||
[(_cr_train_prev(cr), _cr_data(cr, metric, estimators)) for cr in self.crs],
|
||||
key=lambda cr: len(cr[1].columns),
|
||||
reverse=True,
|
||||
)
|
||||
_crs_train, _crs_data = zip(*_crs_sorted)
|
||||
|
||||
_data: pd.DataFrame = pd.concat(
|
||||
_crs_data,
|
||||
axis=0,
|
||||
keys=_crs_train,
|
||||
)
|
||||
|
||||
# The MultiIndex is recreated to make the outer-most level a tuple and not a
|
||||
# sequence of values
|
||||
_len_tr_idx = len(_crs_train[0])
|
||||
_idx = _data.index.to_list()
|
||||
_idx = pd.MultiIndex.from_tuples(
|
||||
[tuple([midx[:_len_tr_idx]] + list(midx[_len_tr_idx:])) for midx in _idx]
|
||||
)
|
||||
_data.index = _idx
|
||||
|
||||
_data = _data.sort_index(axis=0, level=0, ascending=False, sort_remaining=False)
|
||||
|
||||
return _data
|
||||
|
||||
def shift_data(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
_shift_data: pd.DataFrame = pd.concat(
|
||||
sorted(
|
||||
[cr.shift_data(metric, estimators) for cr in self.crs],
|
||||
key=lambda d: len(d.columns),
|
||||
reverse=True,
|
||||
),
|
||||
axis=0,
|
||||
)
|
||||
|
||||
shift_idx_0 = _shift_data.index.get_level_values(0)
|
||||
|
||||
shift_idx_1 = np.empty(shape=shift_idx_0.shape, dtype="<i4")
|
||||
for _id in np.unique(shift_idx_0):
|
||||
_wh = np.where(shift_idx_0 == _id)[0]
|
||||
shift_idx_1[_wh] = np.arange(_wh.shape[0])
|
||||
|
||||
_shift_data.index = pd.MultiIndex.from_arrays([shift_idx_0, shift_idx_1])
|
||||
_shift_data = _shift_data.sort_index(axis=0, level=0)
|
||||
|
||||
return _shift_data
|
||||
|
||||
def add(self, cr: CompReport):
|
||||
if cr is None:
|
||||
return
|
||||
|
||||
self.crs.append(cr)
|
||||
|
||||
def __add__(self, cr: CompReport):
|
||||
if cr is None:
|
||||
return
|
||||
|
||||
return DatasetReport(self.name, crs=self.crs + [cr])
|
||||
|
||||
def __iadd__(self, cr: CompReport):
|
||||
self.add(cr)
|
||||
return self
|
||||
|
||||
def train_table(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
f_data = self.data(metric=metric, estimators=estimators)
|
||||
avg_p = f_data.groupby(level=1, sort=False).mean()
|
||||
avg_p.loc["mean", :] = f_data.mean()
|
||||
return avg_p
|
||||
|
||||
def train_std_table(self, metric: str = None, estimators: List[str] = None):
|
||||
f_data = self.data(metric=metric, estimators=estimators)
|
||||
avg_p = f_data.groupby(level=1, sort=False).mean()
|
||||
avg_p.loc["mean", :] = f_data.mean()
|
||||
avg_s = f_data.groupby(level=1, sort=False).std()
|
||||
avg_s.loc["mean", :] = f_data.std()
|
||||
avg_r = pd.concat([avg_p, avg_s], axis=1, keys=["avg", "std"])
|
||||
return avg_r
|
||||
|
||||
def test_table(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
f_data = self.data(metric=metric, estimators=estimators)
|
||||
avg_p = f_data.groupby(level=0, sort=False).mean()
|
||||
avg_p.loc["mean", :] = f_data.mean()
|
||||
return avg_p
|
||||
|
||||
def shift_table(
|
||||
self, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
f_data = self.shift_data(metric=metric, estimators=estimators)
|
||||
avg_p = f_data.groupby(level=0, sort=False).mean()
|
||||
avg_p.loc["mean", :] = f_data.mean()
|
||||
return avg_p
|
||||
|
||||
def get_plots(
|
||||
self,
|
||||
data=None,
|
||||
mode="delta_train",
|
||||
metric="acc",
|
||||
estimators=None,
|
||||
conf="default",
|
||||
save_fig=True,
|
||||
base_path=None,
|
||||
backend=None,
|
||||
):
|
||||
if mode == "delta_train":
|
||||
_data = self.data(metric, estimators) if data is None else data
|
||||
avg_on_train = _data.groupby(level=1, sort=False).mean()
|
||||
if avg_on_train.empty:
|
||||
return None
|
||||
# sort index in reverse order
|
||||
avg_on_train = self.sort_delta_train_index(avg_on_train)
|
||||
prevs_on_train = avg_on_train.index.unique(0)
|
||||
return plot.plot_delta(
|
||||
# base_prevs=np.around(
|
||||
# [(1.0 - p, p) for p in prevs_on_train], decimals=2
|
||||
# ),
|
||||
base_prevs=prevs_on_train,
|
||||
columns=avg_on_train.columns.to_numpy(),
|
||||
data=avg_on_train.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=None,
|
||||
avg="train",
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "stdev_train":
|
||||
_data = self.data(metric, estimators) if data is None else data
|
||||
avg_on_train = _data.groupby(level=1, sort=False).mean()
|
||||
if avg_on_train.empty:
|
||||
return None
|
||||
prevs_on_train = avg_on_train.index.unique(0)
|
||||
stdev_on_train = _data.groupby(level=1, sort=False).std()
|
||||
return plot.plot_delta(
|
||||
# base_prevs=np.around(
|
||||
# [(1.0 - p, p) for p in prevs_on_train], decimals=2
|
||||
# ),
|
||||
base_prevs=prevs_on_train,
|
||||
columns=avg_on_train.columns.to_numpy(),
|
||||
data=avg_on_train.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=None,
|
||||
stdevs=stdev_on_train.T.to_numpy(),
|
||||
avg="train",
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "delta_test":
|
||||
_data = self.data(metric, estimators) if data is None else data
|
||||
avg_on_test = _data.groupby(level=0, sort=False).mean()
|
||||
if avg_on_test.empty:
|
||||
return None
|
||||
prevs_on_test = avg_on_test.index.unique(0)
|
||||
return plot.plot_delta(
|
||||
# base_prevs=np.around([(1.0 - p, p) for p in prevs_on_test], decimals=2),
|
||||
base_prevs=prevs_on_test,
|
||||
columns=avg_on_test.columns.to_numpy(),
|
||||
data=avg_on_test.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=None,
|
||||
avg="test",
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "stdev_test":
|
||||
_data = self.data(metric, estimators) if data is None else data
|
||||
avg_on_test = _data.groupby(level=0, sort=False).mean()
|
||||
if avg_on_test.empty:
|
||||
return None
|
||||
prevs_on_test = avg_on_test.index.unique(0)
|
||||
stdev_on_test = _data.groupby(level=0, sort=False).std()
|
||||
return plot.plot_delta(
|
||||
# base_prevs=np.around([(1.0 - p, p) for p in prevs_on_test], decimals=2),
|
||||
base_prevs=prevs_on_test,
|
||||
columns=avg_on_test.columns.to_numpy(),
|
||||
data=avg_on_test.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=None,
|
||||
stdevs=stdev_on_test.T.to_numpy(),
|
||||
avg="test",
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "shift":
|
||||
_shift_data = self.shift_data(metric, estimators) if data is None else data
|
||||
avg_shift = _shift_data.groupby(level=0, sort=False).mean()
|
||||
if avg_shift.empty:
|
||||
return None
|
||||
count_shift = _shift_data.groupby(level=0, sort=False).count()
|
||||
prevs_shift = avg_shift.index.unique(0)
|
||||
return plot.plot_shift(
|
||||
# shift_prevs=np.around([(1.0 - p, p) for p in prevs_shift], decimals=2),
|
||||
shift_prevs=prevs_shift,
|
||||
columns=avg_shift.columns.to_numpy(),
|
||||
data=avg_shift.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
train_prev=None,
|
||||
counts=count_shift.T.to_numpy(),
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "fit_scores":
|
||||
_fit_scores = self.fit_scores(metric, estimators) if data is None else data
|
||||
if _fit_scores is None:
|
||||
return None
|
||||
train_prevs = self.data(metric, estimators).index.unique(0)
|
||||
return plot.plot_fit_scores(
|
||||
train_prevs=train_prevs,
|
||||
scores=_fit_scores,
|
||||
metric=metric,
|
||||
name=conf,
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
elif mode == "diagonal":
|
||||
f_data = self.data(metric=metric + "_score", estimators=estimators)
|
||||
if f_data.empty:
|
||||
return None
|
||||
|
||||
ref: pd.Series = f_data.loc[:, "ref"]
|
||||
f_data.drop(columns=["ref"], inplace=True)
|
||||
return plot.plot_diagonal(
|
||||
reference=ref.to_numpy(),
|
||||
columns=f_data.columns.to_numpy(),
|
||||
data=f_data.T.to_numpy(),
|
||||
metric=metric,
|
||||
name=conf,
|
||||
# train_prev=self.train_prev,
|
||||
fixed_lim=True,
|
||||
save_fig=save_fig,
|
||||
base_path=base_path,
|
||||
backend=backend,
|
||||
)
|
||||
|
||||
def to_md(
|
||||
self,
|
||||
conf="default",
|
||||
metric="acc",
|
||||
estimators=[],
|
||||
dr_modes=_default_dr_modes,
|
||||
cr_modes=_default_cr_modes,
|
||||
cr_prevs: List[str] = None,
|
||||
plot_path=None,
|
||||
):
|
||||
res = f"# {self.name}\n\n"
|
||||
for cr in self.crs:
|
||||
if (
|
||||
cr_prevs is not None
|
||||
and str(round(cr.train_prev[1] * 100)) not in cr_prevs
|
||||
):
|
||||
continue
|
||||
_md = cr.to_md(
|
||||
conf,
|
||||
metric=metric,
|
||||
estimators=estimators,
|
||||
modes=cr_modes,
|
||||
plot_path=plot_path,
|
||||
)
|
||||
res += f"{_md}\n\n"
|
||||
|
||||
_data = self.data(metric=metric, estimators=estimators)
|
||||
_shift_data = self.shift_data(metric=metric, estimators=estimators)
|
||||
|
||||
res += "## avg\n"
|
||||
|
||||
######################## avg on train ########################
|
||||
res += "### avg on train\n"
|
||||
|
||||
if "train_table" in dr_modes:
|
||||
avg_on_train_tbl = _data.groupby(level=1, sort=False).mean()
|
||||
avg_on_train_tbl.loc["avg", :] = _data.mean()
|
||||
res += avg_on_train_tbl.to_html() + "\n\n"
|
||||
|
||||
if "delta_train" in dr_modes:
|
||||
_, delta_op = self.get_plots(
|
||||
data=_data,
|
||||
mode="delta_train",
|
||||
metric=metric,
|
||||
estimators=estimators,
|
||||
conf=conf,
|
||||
base_path=plot_path,
|
||||
save_fig=True,
|
||||
)
|
||||
_op = delta_op.relative_to(delta_op.parents[1]).as_posix()
|
||||
res += f"\n"
|
||||
|
||||
if "stdev_train" in dr_modes:
|
||||
_, delta_stdev_op = self.get_plots(
|
||||
data=_data,
|
||||
mode="stdev_train",
|
||||
metric=metric,
|
||||
estimators=estimators,
|
||||
conf=conf,
|
||||
base_path=plot_path,
|
||||
save_fig=True,
|
||||
)
|
||||
_op = delta_stdev_op.relative_to(delta_stdev_op.parents[1]).as_posix()
|
||||
res += f"\n"
|
||||
|
||||
######################## avg on test ########################
|
||||
res += "### avg on test\n"
|
||||
|
||||
if "test_table" in dr_modes:
|
||||
avg_on_test_tbl = _data.groupby(level=0, sort=False).mean()
|
||||
avg_on_test_tbl.loc["avg", :] = _data.mean()
|
||||
res += avg_on_test_tbl.to_html() + "\n\n"
|
||||
|
||||
if "delta_test" in dr_modes:
|
||||
_, delta_op = self.get_plots(
|
||||
data=_data,
|
||||
mode="delta_test",
|
||||
metric=metric,
|
||||
estimators=estimators,
|
||||
conf=conf,
|
||||
base_path=plot_path,
|
||||
save_fig=True,
|
||||
)
|
||||
_op = delta_op.relative_to(delta_op.parents[1]).as_posix()
|
||||
res += f"\n"
|
||||
|
||||
if "stdev_test" in dr_modes:
|
||||
_, delta_stdev_op = self.get_plots(
|
||||
data=_data,
|
||||
mode="stdev_test",
|
||||
metric=metric,
|
||||
estimators=estimators,
|
||||
conf=conf,
|
||||
base_path=plot_path,
|
||||
save_fig=True,
|
||||
)
|
||||
_op = delta_stdev_op.relative_to(delta_stdev_op.parents[1]).as_posix()
|
||||
res += f"\n"
|
||||
|
||||
######################## avg shift ########################
|
||||
res += "### avg dataset shift\n"
|
||||
|
||||
if "shift_table" in dr_modes:
|
||||
shift_on_train_tbl = _shift_data.groupby(level=0, sort=False).mean()
|
||||
shift_on_train_tbl.loc["avg", :] = _shift_data.mean()
|
||||
res += shift_on_train_tbl.to_html() + "\n\n"
|
||||
|
||||
if "shift" in dr_modes:
|
||||
_, shift_op = self.get_plots(
|
||||
data=_shift_data,
|
||||
mode="shift",
|
||||
metric=metric,
|
||||
estimators=estimators,
|
||||
conf=conf,
|
||||
base_path=plot_path,
|
||||
save_fig=True,
|
||||
)
|
||||
_op = shift_op.relative_to(shift_op.parents[1]).as_posix()
|
||||
res += f"\n"
|
||||
|
||||
return res
|
||||
|
||||
def pickle(self, pickle_path: Path):
|
||||
with open(pickle_path, "wb") as f:
|
||||
pickle.dump(self, f)
|
||||
|
||||
return self
|
||||
|
||||
@classmethod
|
||||
def unpickle(cls, pickle_path: Path, report_info=False):
|
||||
with open(pickle_path, "rb") as f:
|
||||
dr = pickle.load(f)
|
||||
|
||||
if report_info:
|
||||
return DatasetReportInfo(dr, pickle_path)
|
||||
|
||||
return dr
|
||||
|
||||
def __iter__(self):
|
||||
return (cr for cr in self.crs)
|
||||
|
||||
|
||||
class DatasetReportInfo:
|
||||
def __init__(self, dr: DatasetReport, path: Path):
|
||||
self.dr = dr
|
||||
self.name = str(path.parent)
|
||||
_data = dr.data()
|
||||
self.columns = defaultdict(list)
|
||||
for metric, estim in _data.columns:
|
||||
self.columns[estim].append(metric)
|
||||
# self.columns = list(_data.columns.unique(1))
|
||||
self.train_prevs = len(self.dr.crs)
|
||||
self.test_prevs = len(_data.index.unique(1))
|
||||
self.repeats = len(_data.index.unique(2))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
_d = {
|
||||
"train prevs.": self.train_prevs,
|
||||
"test prevs.": self.test_prevs,
|
||||
"repeats": self.repeats,
|
||||
"columns": self.columns,
|
||||
}
|
||||
_r = f"{self.name}\n{json.dumps(_d, indent=2)}\n"
|
||||
|
||||
return _r
|
|
@ -0,0 +1,41 @@
|
|||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy import stats as sp_stats
|
||||
|
||||
# from quacc.evaluation.estimators import CE
|
||||
from quacc.legacy.evaluation.report import CompReport, DatasetReport
|
||||
|
||||
|
||||
def shapiro(
|
||||
r: DatasetReport | CompReport, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
_data = r.data(metric, estimators)
|
||||
shapiro_data = np.array(
|
||||
[sp_stats.shapiro(_data.loc[:, e]) for e in _data.columns.unique(0)]
|
||||
).T
|
||||
dr_index = ["shapiro_W", "shapiro_p"]
|
||||
dr_columns = _data.columns.unique(0)
|
||||
return pd.DataFrame(shapiro_data, columns=dr_columns, index=dr_index)
|
||||
|
||||
|
||||
def wilcoxon(
|
||||
r: DatasetReport | CompReport, metric: str = None, estimators: List[str] = None
|
||||
) -> pd.DataFrame:
|
||||
_data = r.data(metric, estimators)
|
||||
|
||||
_data = _data.dropna(axis=0, how="any")
|
||||
_wilcoxon = {}
|
||||
for est in _data.columns.unique(0):
|
||||
_wilcoxon[est] = [
|
||||
sp_stats.wilcoxon(_data.loc[:, est], _data.loc[:, e]).pvalue
|
||||
if e != est
|
||||
else 1.0
|
||||
for e in _data.columns.unique(0)
|
||||
]
|
||||
wilcoxon_data = np.array(list(_wilcoxon.values()))
|
||||
|
||||
dr_index = list(_wilcoxon.keys())
|
||||
dr_columns = _data.columns.unique(0)
|
||||
return pd.DataFrame(wilcoxon_data, columns=dr_columns, index=dr_index)
|
|
@ -0,0 +1,58 @@
|
|||
from traceback import print_exception as traceback
|
||||
|
||||
import quacc.legacy.evaluation.comp as comp
|
||||
|
||||
# from quacc.logger import Logger
|
||||
from quacc import logger
|
||||
from quacc.dataset import Dataset
|
||||
from quacc.legacy.environment import env
|
||||
from quacc.legacy.evaluation.estimators import CE
|
||||
from quacc.utils.commons import create_dataser_dir
|
||||
|
||||
|
||||
def estimate_comparison():
|
||||
# log = Logger.logger()
|
||||
log = logger.logger()
|
||||
for conf in env.load_confs():
|
||||
dataset = Dataset(
|
||||
env.DATASET_NAME,
|
||||
target=env.DATASET_TARGET,
|
||||
n_prevalences=env.DATASET_N_PREVS,
|
||||
prevs=env.DATASET_PREVS,
|
||||
)
|
||||
create_dataser_dir(
|
||||
dataset.name,
|
||||
update=env.DATASET_DIR_UPDATE,
|
||||
)
|
||||
# Logger.add_handler(env.OUT_DIR / f"{dataset.name}.log")
|
||||
logger.add_handler(env.OUT_DIR / f"{dataset.name}.log")
|
||||
try:
|
||||
dr = comp.evaluate_comparison(
|
||||
dataset,
|
||||
estimators=CE.name[env.COMP_ESTIMATORS],
|
||||
)
|
||||
dr.pickle(env.OUT_DIR / f"{dataset.name}.pickle")
|
||||
except Exception as e:
|
||||
log.error(f"Evaluation over {dataset.name} failed. Exception: {e}")
|
||||
traceback(e)
|
||||
|
||||
# Logger.clear_handlers()
|
||||
logger.clear_handlers()
|
||||
|
||||
|
||||
def main():
|
||||
# log = Logger.logger()
|
||||
log = logger.setup_logger()
|
||||
|
||||
try:
|
||||
estimate_comparison()
|
||||
except Exception as e:
|
||||
log.error(f"estimate comparison failed. Exception: {e}")
|
||||
traceback(e)
|
||||
|
||||
# Logger.close()
|
||||
logger.logger_manager().close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,353 @@
|
|||
from abc import abstractmethod
|
||||
from copy import deepcopy
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.method.aggregative import BaseQuantifier
|
||||
from sklearn.base import BaseEstimator
|
||||
|
||||
import quacc.deprecated.method.confidence as conf
|
||||
from quacc.legacy.data import (
|
||||
ExtBinPrev,
|
||||
ExtendedCollection,
|
||||
ExtendedData,
|
||||
ExtendedPrev,
|
||||
ExtensionPolicy,
|
||||
ExtMulPrev,
|
||||
)
|
||||
|
||||
|
||||
class BaseAccuracyEstimator(BaseQuantifier):
|
||||
def __init__(
|
||||
self,
|
||||
classifier: BaseEstimator,
|
||||
quantifier: BaseQuantifier,
|
||||
dense=False,
|
||||
):
|
||||
self.__check_classifier(classifier)
|
||||
self.quantifier = quantifier
|
||||
self.extpol = ExtensionPolicy(dense=dense)
|
||||
|
||||
def __check_classifier(self, classifier):
|
||||
if not hasattr(classifier, "predict_proba"):
|
||||
raise ValueError(
|
||||
f"Passed classifier {classifier.__class__.__name__} cannot predict probabilities."
|
||||
)
|
||||
self.classifier = classifier
|
||||
|
||||
def extend(self, coll: LabelledCollection, pred_proba=None) -> ExtendedCollection:
|
||||
if pred_proba is None:
|
||||
pred_proba = self.classifier.predict_proba(coll.X)
|
||||
|
||||
return ExtendedCollection.from_lc(
|
||||
coll, pred_proba=pred_proba, ext=pred_proba, extpol=self.extpol
|
||||
)
|
||||
|
||||
def _extend_instances(self, instances: np.ndarray | sp.csr_matrix):
|
||||
pred_proba = self.classifier.predict_proba(instances)
|
||||
return ExtendedData(instances, pred_proba=pred_proba, extpol=self.extpol)
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, train: LabelledCollection | ExtendedCollection): ...
|
||||
|
||||
@abstractmethod
|
||||
def estimate(self, instances, ext=False) -> ExtendedPrev: ...
|
||||
|
||||
@property
|
||||
def dense(self):
|
||||
return self.extpol.dense
|
||||
|
||||
|
||||
class ConfidenceBasedAccuracyEstimator(BaseAccuracyEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
classifier: BaseEstimator,
|
||||
quantifier: BaseQuantifier,
|
||||
confidence=None,
|
||||
):
|
||||
super().__init__(
|
||||
classifier=classifier,
|
||||
quantifier=quantifier,
|
||||
)
|
||||
self.__check_confidence(confidence)
|
||||
self.calibrator = None
|
||||
|
||||
def __check_confidence(self, confidence):
|
||||
if isinstance(confidence, str):
|
||||
self.confidence = [confidence]
|
||||
elif isinstance(confidence, list):
|
||||
self.confidence = confidence
|
||||
else:
|
||||
self.confidence = None
|
||||
|
||||
def _fit_confidence(self, X, y, probas):
|
||||
self.confidence_metrics = conf.get_metrics(self.confidence)
|
||||
if self.confidence_metrics is None:
|
||||
return
|
||||
|
||||
for m in self.confidence_metrics:
|
||||
m.fit(X, y, probas)
|
||||
|
||||
def _get_pred_ext(self, pred_proba: np.ndarray):
|
||||
return pred_proba
|
||||
|
||||
def __get_ext(
|
||||
self, X: np.ndarray | sp.csr_matrix, pred_proba: np.ndarray
|
||||
) -> np.ndarray:
|
||||
if self.confidence_metrics is None or len(self.confidence_metrics) == 0:
|
||||
return pred_proba
|
||||
|
||||
_conf_ext = np.concatenate(
|
||||
[m.conf(X, pred_proba) for m in self.confidence_metrics],
|
||||
axis=1,
|
||||
)
|
||||
|
||||
_pred_ext = self._get_pred_ext(pred_proba)
|
||||
|
||||
return np.concatenate([_conf_ext, _pred_ext], axis=1)
|
||||
|
||||
def extend(
|
||||
self, coll: LabelledCollection, pred_proba=None, prefit=False
|
||||
) -> ExtendedCollection:
|
||||
if pred_proba is None:
|
||||
pred_proba = self.classifier.predict_proba(coll.X)
|
||||
|
||||
if prefit:
|
||||
self._fit_confidence(coll.X, coll.y, pred_proba)
|
||||
else:
|
||||
if not hasattr(self, "confidence_metrics"):
|
||||
raise AttributeError(
|
||||
"Confidence metrics are not fit and cannot be computed."
|
||||
"Consider setting prefit to True."
|
||||
)
|
||||
|
||||
_ext = self.__get_ext(coll.X, pred_proba)
|
||||
return ExtendedCollection.from_lc(
|
||||
coll, pred_proba=pred_proba, ext=_ext, extpol=self.extpol
|
||||
)
|
||||
|
||||
def _extend_instances(
|
||||
self,
|
||||
instances: np.ndarray | sp.csr_matrix,
|
||||
) -> ExtendedData:
|
||||
pred_proba = self.classifier.predict_proba(instances)
|
||||
_ext = self.__get_ext(instances, pred_proba)
|
||||
return ExtendedData(
|
||||
instances, pred_proba=pred_proba, ext=_ext, extpol=self.extpol
|
||||
)
|
||||
|
||||
|
||||
class MultiClassAccuracyEstimator(ConfidenceBasedAccuracyEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
classifier: BaseEstimator,
|
||||
quantifier: BaseQuantifier,
|
||||
confidence: str = None,
|
||||
collapse_false=False,
|
||||
group_false=False,
|
||||
dense=False,
|
||||
):
|
||||
super().__init__(
|
||||
classifier=classifier,
|
||||
quantifier=quantifier,
|
||||
confidence=confidence,
|
||||
)
|
||||
self.extpol = ExtensionPolicy(
|
||||
collapse_false=collapse_false,
|
||||
group_false=group_false,
|
||||
dense=dense,
|
||||
)
|
||||
self.e_train = None
|
||||
|
||||
# def _get_pred_ext(self, pred_proba: np.ndarray):
|
||||
# return np.argmax(pred_proba, axis=1, keepdims=True)
|
||||
|
||||
def _get_multi_quant(self, quant, train: LabelledCollection):
|
||||
_nz = np.nonzero(train.counts())[0]
|
||||
if _nz.shape[0] == 1:
|
||||
return TrivialQuantifier(train.n_classes, _nz[0])
|
||||
else:
|
||||
return quant
|
||||
|
||||
def fit(self, train: LabelledCollection):
|
||||
pred_proba = self.classifier.predict_proba(train.X)
|
||||
self._fit_confidence(train.X, train.y, pred_proba)
|
||||
self.e_train = self.extend(train, pred_proba=pred_proba)
|
||||
|
||||
self.quantifier = self._get_multi_quant(self.quantifier, self.e_train)
|
||||
self.quantifier.fit(self.e_train)
|
||||
|
||||
return self
|
||||
|
||||
def estimate(
|
||||
self, instances: ExtendedData | np.ndarray | sp.csr_matrix
|
||||
) -> ExtendedPrev:
|
||||
e_inst = instances
|
||||
if not isinstance(e_inst, ExtendedData):
|
||||
e_inst = self._extend_instances(instances)
|
||||
|
||||
estim_prev = self.quantifier.quantify(e_inst.X)
|
||||
return ExtMulPrev(
|
||||
estim_prev,
|
||||
e_inst.nbcl,
|
||||
q_classes=self.quantifier.classes_,
|
||||
extpol=self.extpol,
|
||||
)
|
||||
|
||||
@property
|
||||
def collapse_false(self):
|
||||
return self.extpol.collapse_false
|
||||
|
||||
@property
|
||||
def group_false(self):
|
||||
return self.extpol.group_false
|
||||
|
||||
|
||||
class TrivialQuantifier:
|
||||
def __init__(self, n_classes, trivial_class):
|
||||
self.trivial_class = trivial_class
|
||||
|
||||
def fit(self, train: LabelledCollection):
|
||||
pass
|
||||
|
||||
def quantify(self, inst: LabelledCollection) -> np.ndarray:
|
||||
return np.array([1.0])
|
||||
|
||||
@property
|
||||
def classes_(self):
|
||||
return np.array([self.trivial_class])
|
||||
|
||||
|
||||
class QuantifierProxy:
|
||||
def __init__(self, train: LabelledCollection):
|
||||
self.o_nclasses = train.n_classes
|
||||
self.o_classes = train.classes_
|
||||
self.o_index = {c: i for i, c in enumerate(train.classes_)}
|
||||
|
||||
self.mapping = {}
|
||||
self.r_mapping = {}
|
||||
_cnt = 0
|
||||
for cl, c in zip(train.classes_, train.counts()):
|
||||
if c > 0:
|
||||
self.mapping[cl] = _cnt
|
||||
self.r_mapping[_cnt] = cl
|
||||
_cnt += 1
|
||||
|
||||
self.n_nclasses = len(self.mapping)
|
||||
|
||||
def apply_mapping(self, coll: LabelledCollection) -> LabelledCollection:
|
||||
if not self.proxied:
|
||||
return coll
|
||||
|
||||
n_labels = np.copy(coll.labels)
|
||||
for k in self.mapping:
|
||||
n_labels[coll.labels == k] = self.mapping[k]
|
||||
|
||||
return LabelledCollection(coll.X, n_labels, classes=np.arange(self.n_nclasses))
|
||||
|
||||
def apply_rmapping(self, prevs: np.ndarray, q_classes: np.ndarray) -> np.ndarray:
|
||||
if not self.proxied:
|
||||
return prevs, q_classes
|
||||
|
||||
n_qclasses = np.array([self.r_mapping[qc] for qc in q_classes])
|
||||
|
||||
return prevs, n_qclasses
|
||||
|
||||
def get_trivial(self):
|
||||
return TrivialQuantifier(self.o_nclasses, self.n_nclasses)
|
||||
|
||||
@property
|
||||
def proxied(self):
|
||||
return self.o_nclasses != self.n_nclasses
|
||||
|
||||
|
||||
class BinaryQuantifierAccuracyEstimator(ConfidenceBasedAccuracyEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
classifier: BaseEstimator,
|
||||
quantifier: BaseAccuracyEstimator,
|
||||
confidence: str = None,
|
||||
group_false: bool = False,
|
||||
dense: bool = False,
|
||||
):
|
||||
super().__init__(
|
||||
classifier=classifier,
|
||||
quantifier=quantifier,
|
||||
confidence=confidence,
|
||||
)
|
||||
self.quantifiers = []
|
||||
self.extpol = ExtensionPolicy(
|
||||
group_false=group_false,
|
||||
dense=dense,
|
||||
)
|
||||
|
||||
def _get_binary_quant(self, quant, train: LabelledCollection):
|
||||
_nz = np.nonzero(train.counts())[0]
|
||||
if _nz.shape[0] == 1:
|
||||
return TrivialQuantifier(train.n_classes, _nz[0])
|
||||
else:
|
||||
return deepcopy(quant)
|
||||
|
||||
def fit(self, train: LabelledCollection | ExtendedCollection):
|
||||
pred_proba = self.classifier.predict_proba(train.X)
|
||||
self._fit_confidence(train.X, train.y, pred_proba)
|
||||
self.e_train = self.extend(train, pred_proba=pred_proba)
|
||||
|
||||
self.n_classes = self.e_train.n_classes
|
||||
e_trains = self.e_train.split_by_pred()
|
||||
|
||||
self.quantifiers = []
|
||||
for train in e_trains:
|
||||
quant = self._get_binary_quant(self.quantifier, train)
|
||||
quant.fit(train)
|
||||
self.quantifiers.append(quant)
|
||||
|
||||
return self
|
||||
|
||||
def estimate(
|
||||
self, instances: ExtendedData | np.ndarray | sp.csr_matrix
|
||||
) -> np.ndarray:
|
||||
e_inst = instances
|
||||
if not isinstance(e_inst, ExtendedData):
|
||||
e_inst = self._extend_instances(instances)
|
||||
|
||||
s_inst = e_inst.split_by_pred()
|
||||
norms = [s_i.shape[0] / len(e_inst) for s_i in s_inst]
|
||||
estim_prevs = self._quantify_helper(s_inst, norms)
|
||||
|
||||
# estim_prev = np.concatenate(estim_prevs.T)
|
||||
# return ExtendedPrev(estim_prev, e_inst.nbcl, extpol=self.extpol)
|
||||
|
||||
return ExtBinPrev(
|
||||
estim_prevs,
|
||||
e_inst.nbcl,
|
||||
q_classes=[quant.classes_ for quant in self.quantifiers],
|
||||
extpol=self.extpol,
|
||||
)
|
||||
|
||||
def _quantify_helper(
|
||||
self,
|
||||
s_inst: List[np.ndarray | sp.csr_matrix],
|
||||
norms: List[float],
|
||||
):
|
||||
estim_prevs = []
|
||||
for quant, inst, norm in zip(self.quantifiers, s_inst, norms):
|
||||
if inst.shape[0] > 0:
|
||||
estim_prev = quant.quantify(inst) * norm
|
||||
estim_prevs.append(estim_prev)
|
||||
else:
|
||||
estim_prevs.append(np.zeros((len(quant.classes_),)))
|
||||
|
||||
# return np.array(estim_prevs)
|
||||
return estim_prevs
|
||||
|
||||
@property
|
||||
def group_false(self):
|
||||
return self.extpol.group_false
|
||||
|
||||
|
||||
BAE = BaseAccuracyEstimator
|
||||
MCAE = MultiClassAccuracyEstimator
|
||||
BQAE = BinaryQuantifierAccuracyEstimator
|
|
@ -0,0 +1,98 @@
|
|||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
import baselines.atc as atc
|
||||
|
||||
__confs = {}
|
||||
|
||||
|
||||
def metric(name):
|
||||
def wrapper(cl):
|
||||
__confs[name] = cl
|
||||
return cl
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
class ConfidenceMetric:
|
||||
def fit(self, X, y, probas):
|
||||
pass
|
||||
|
||||
def conf(self, X, probas):
|
||||
return probas
|
||||
|
||||
|
||||
@metric("max_conf")
|
||||
class MaxConf(ConfidenceMetric):
|
||||
def conf(self, X, probas):
|
||||
_mc = np.max(probas, axis=1, keepdims=True)
|
||||
return _mc
|
||||
|
||||
|
||||
@metric("entropy")
|
||||
class Entropy(ConfidenceMetric):
|
||||
def conf(self, X, probas):
|
||||
_ent = np.sum(
|
||||
np.multiply(probas, np.log(probas + 1e-20)), axis=1, keepdims=True
|
||||
)
|
||||
return _ent
|
||||
|
||||
|
||||
@metric("isoft")
|
||||
class InverseSoftmax(ConfidenceMetric):
|
||||
def conf(self, X, probas):
|
||||
_probas = probas / np.sum(probas, axis=1, keepdims=True)
|
||||
_probas = np.log(_probas) - np.mean(np.log(_probas), axis=1, keepdims=True)
|
||||
return np.max(_probas, axis=1, keepdims=True)
|
||||
|
||||
|
||||
@metric("threshold")
|
||||
class Threshold(ConfidenceMetric):
|
||||
def get_scores(self, probas, keepdims=False):
|
||||
return np.max(probas, axis=1, keepdims=keepdims)
|
||||
|
||||
def fit(self, X, y, probas):
|
||||
scores = self.get_scores(probas)
|
||||
_, self.threshold = atc.find_ATC_threshold(scores, y)
|
||||
|
||||
def conf(self, X, probas):
|
||||
scores = self.get_scores(probas, keepdims=True)
|
||||
_exp = scores - self.threshold
|
||||
return _exp
|
||||
|
||||
# def conf(self, X, probas):
|
||||
# scores = self.get_scores(probas)
|
||||
# _exp = np.where(
|
||||
# scores >= self.threshold, np.ones(scores.shape), np.zeros(scores.shape)
|
||||
# )
|
||||
# return _exp[:, np.newaxis]
|
||||
|
||||
|
||||
@metric("linreg")
|
||||
class LinReg(ConfidenceMetric):
|
||||
def extend(self, X, probas):
|
||||
if sp.issparse(X):
|
||||
return sp.hstack([X, probas])
|
||||
else:
|
||||
return np.concatenate([X, probas], axis=1)
|
||||
|
||||
def fit(self, X, y, probas):
|
||||
reg_X = self.extend(X, probas)
|
||||
reg_y = probas[np.arange(probas.shape[0]), y]
|
||||
self.reg = LinearRegression()
|
||||
self.reg.fit(reg_X, reg_y)
|
||||
|
||||
def conf(self, X, probas):
|
||||
reg_X = self.extend(X, probas)
|
||||
return self.reg.predict(reg_X)[:, np.newaxis]
|
||||
|
||||
|
||||
def get_metrics(names: List[str]):
|
||||
if names is None:
|
||||
return None
|
||||
|
||||
__fnames = [n for n in names if n in __confs]
|
||||
return [__confs[m]() for m in __fnames]
|
|
@ -0,0 +1,480 @@
|
|||
import itertools
|
||||
import math
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from time import time
|
||||
from typing import Callable, Union
|
||||
|
||||
import numpy as np
|
||||
from joblib import Parallel
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.protocol import (
|
||||
AbstractProtocol,
|
||||
OnLabelledCollectionProtocol,
|
||||
)
|
||||
|
||||
import quacc as qc
|
||||
import quacc.error
|
||||
from quacc.deprecated.method.base import (
|
||||
BaseAccuracyEstimator,
|
||||
)
|
||||
from quacc.legacy.data import ExtendedCollection
|
||||
from quacc.legacy.evaluation.evaluate import evaluate
|
||||
from quacc.logger import logger
|
||||
|
||||
|
||||
class GridSearchAE(BaseAccuracyEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
model: BaseAccuracyEstimator,
|
||||
param_grid: dict,
|
||||
protocol: AbstractProtocol,
|
||||
error: Union[Callable, str] = qc.error.maccd,
|
||||
refit=True,
|
||||
# timeout=-1,
|
||||
n_jobs=None,
|
||||
verbose=False,
|
||||
):
|
||||
self.model = model
|
||||
self.param_grid = self.__normalize_params(param_grid)
|
||||
self.protocol = protocol
|
||||
self.refit = refit
|
||||
# self.timeout = timeout
|
||||
self.n_jobs = qc._get_njobs(n_jobs)
|
||||
self.verbose = verbose
|
||||
self.__check_error(error)
|
||||
assert isinstance(protocol, AbstractProtocol), "unknown protocol"
|
||||
|
||||
def _sout(self, msg, level=0):
|
||||
if level > 0 or self.verbose:
|
||||
print(f"[{self.__class__.__name__}@{self.model.__class__.__name__}]: {msg}")
|
||||
|
||||
def __normalize_params(self, params):
|
||||
__remap = {}
|
||||
for key in params.keys():
|
||||
k, delim, sub_key = key.partition("__")
|
||||
if delim and k == "q":
|
||||
__remap[key] = f"quantifier__{sub_key}"
|
||||
|
||||
return {(__remap[k] if k in __remap else k): v for k, v in params.items()}
|
||||
|
||||
def __check_error(self, error):
|
||||
if error in qc.error.ACCURACY_ERROR:
|
||||
self.error = error
|
||||
elif isinstance(error, str):
|
||||
self.error = qc.error.from_name(error)
|
||||
elif hasattr(error, "__call__"):
|
||||
self.error = error
|
||||
else:
|
||||
raise ValueError(
|
||||
f"unexpected error type; must either be a callable function or a str representing\n"
|
||||
f"the name of an error function in {qc.error.ACCURACY_ERROR_NAMES}"
|
||||
)
|
||||
|
||||
def fit(self, training: LabelledCollection):
|
||||
"""Learning routine. Fits methods with all combinations of hyperparameters and selects the one minimizing
|
||||
the error metric.
|
||||
|
||||
:param training: the training set on which to optimize the hyperparameters
|
||||
:return: self
|
||||
"""
|
||||
params_keys = list(self.param_grid.keys())
|
||||
params_values = list(self.param_grid.values())
|
||||
|
||||
protocol = self.protocol
|
||||
|
||||
self.param_scores_ = {}
|
||||
self.best_score_ = None
|
||||
|
||||
tinit = time()
|
||||
|
||||
hyper = [
|
||||
dict(zip(params_keys, val)) for val in itertools.product(*params_values)
|
||||
]
|
||||
|
||||
self._sout(f"starting model selection with {self.n_jobs =}")
|
||||
# self._sout("starting model selection")
|
||||
|
||||
# scores = [self.__params_eval((params, training)) for params in hyper]
|
||||
scores = self._select_scores(hyper, training)
|
||||
|
||||
for params, score, model in scores:
|
||||
if score is not None:
|
||||
if self.best_score_ is None or score < self.best_score_:
|
||||
self.best_score_ = score
|
||||
self.best_params_ = params
|
||||
self.best_model_ = model
|
||||
self.param_scores_[str(params)] = score
|
||||
else:
|
||||
self.param_scores_[str(params)] = "timeout"
|
||||
|
||||
tend = time() - tinit
|
||||
|
||||
if self.best_score_ is None:
|
||||
raise TimeoutError("no combination of hyperparameters seem to work")
|
||||
|
||||
self._sout(
|
||||
f"optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) "
|
||||
f"[took {tend:.4f}s]",
|
||||
level=1,
|
||||
)
|
||||
|
||||
# log = Logger.logger()
|
||||
log = logger()
|
||||
log.debug(
|
||||
f"[{self.model.__class__.__name__}] "
|
||||
f"optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) "
|
||||
f"[took {tend:.4f}s]"
|
||||
)
|
||||
|
||||
if self.refit:
|
||||
if isinstance(protocol, OnLabelledCollectionProtocol):
|
||||
self._sout("refitting on the whole development set")
|
||||
self.best_model_.fit(training + protocol.get_labelled_collection())
|
||||
else:
|
||||
raise RuntimeWarning(
|
||||
f'"refit" was requested, but the protocol does not '
|
||||
f"implement the {OnLabelledCollectionProtocol.__name__} interface"
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
def _select_scores(self, hyper, training):
|
||||
return qc.commons.parallel(
|
||||
self._params_eval,
|
||||
[(params, training) for params in hyper],
|
||||
n_jobs=self.n_jobs,
|
||||
verbose=1,
|
||||
)
|
||||
|
||||
def _params_eval(self, params, training, protocol=None):
|
||||
protocol = self.protocol if protocol is None else protocol
|
||||
error = self.error
|
||||
|
||||
# if self.timeout > 0:
|
||||
|
||||
# def handler(signum, frame):
|
||||
# raise TimeoutError()
|
||||
|
||||
# signal.signal(signal.SIGALRM, handler)
|
||||
|
||||
tinit = time()
|
||||
|
||||
# if self.timeout > 0:
|
||||
# signal.alarm(self.timeout)
|
||||
|
||||
try:
|
||||
model = deepcopy(self.model)
|
||||
# overrides default parameters with the parameters being explored at this iteration
|
||||
model.set_params(**params)
|
||||
# print({k: v for k, v in model.get_params().items() if k in params})
|
||||
model.fit(training)
|
||||
score = evaluate(model, protocol=protocol, error_metric=error)
|
||||
|
||||
ttime = time() - tinit
|
||||
self._sout(
|
||||
f"hyperparams={params}\t got score {score:.5f} [took {ttime:.4f}s]",
|
||||
)
|
||||
|
||||
# if self.timeout > 0:
|
||||
# signal.alarm(0)
|
||||
# except TimeoutError:
|
||||
# self._sout(f"timeout ({self.timeout}s) reached for config {params}")
|
||||
# score = None
|
||||
except ValueError as e:
|
||||
self._sout(
|
||||
f"the combination of hyperparameters {params} is invalid. Exception: {e}",
|
||||
level=1,
|
||||
)
|
||||
score = None
|
||||
# raise e
|
||||
except Exception as e:
|
||||
self._sout(
|
||||
f"something went wrong for config {params}; skipping:"
|
||||
f"\tException: {e}",
|
||||
level=1,
|
||||
)
|
||||
# raise e
|
||||
score = None
|
||||
|
||||
return params, score, model
|
||||
|
||||
def extend(
|
||||
self, coll: LabelledCollection, pred_proba=None, prefit=False
|
||||
) -> ExtendedCollection:
|
||||
assert hasattr(self, "best_model_"), "quantify called before fit"
|
||||
return self.best_model().extend(coll, pred_proba=pred_proba, prefit=prefit)
|
||||
|
||||
def estimate(self, instances):
|
||||
"""Estimate class prevalence values using the best model found after calling the :meth:`fit` method.
|
||||
|
||||
:param instances: sample contanining the instances
|
||||
:return: a ndarray of shape `(n_classes)` with class prevalence estimates as according to the best model found
|
||||
by the model selection process.
|
||||
"""
|
||||
|
||||
assert hasattr(self, "best_model_"), "estimate called before fit"
|
||||
return self.best_model().estimate(instances)
|
||||
|
||||
def set_params(self, **parameters):
|
||||
"""Sets the hyper-parameters to explore.
|
||||
|
||||
:param parameters: a dictionary with keys the parameter names and values the list of values to explore
|
||||
"""
|
||||
self.param_grid = parameters
|
||||
|
||||
def get_params(self, deep=True):
|
||||
"""Returns the dictionary of hyper-parameters to explore (`param_grid`)
|
||||
|
||||
:param deep: Unused
|
||||
:return: the dictionary `param_grid`
|
||||
"""
|
||||
return self.param_grid
|
||||
|
||||
def best_model(self):
|
||||
"""
|
||||
Returns the best model found after calling the :meth:`fit` method, i.e., the one trained on the combination
|
||||
of hyper-parameters that minimized the error function.
|
||||
|
||||
:return: a trained quantifier
|
||||
"""
|
||||
if hasattr(self, "best_model_"):
|
||||
return self.best_model_
|
||||
raise ValueError("best_model called before fit")
|
||||
|
||||
def best_score(self):
|
||||
if hasattr(self, "best_score_"):
|
||||
return self.best_score_
|
||||
raise ValueError("best_score called before fit")
|
||||
|
||||
|
||||
class RandomizedSearchAE(GridSearchAE):
|
||||
ERR_THRESHOLD = 1e-4
|
||||
MAX_ITER_IMPROV = 3
|
||||
|
||||
def _select_scores(self, hyper, training: LabelledCollection):
|
||||
log = logger()
|
||||
hyper = np.array(hyper)
|
||||
rand_index = np.random.choice(
|
||||
np.arange(len(hyper)), size=len(hyper), replace=False
|
||||
)
|
||||
_n_jobs = os.cpu_count() + 1 + self.n_jobs if self.n_jobs < 0 else self.n_jobs
|
||||
batch_size = _n_jobs
|
||||
|
||||
log.debug(f"{batch_size = }")
|
||||
rand_index = list(
|
||||
rand_index[: (len(hyper) // batch_size) * batch_size].reshape(
|
||||
(len(hyper) // batch_size, batch_size)
|
||||
)
|
||||
) + [rand_index[(len(hyper) // batch_size) * batch_size :]]
|
||||
scores = []
|
||||
best_score, iter_from_improv = np.inf, 0
|
||||
with Parallel(n_jobs=self.n_jobs) as parallel:
|
||||
for i, ri in enumerate(rand_index):
|
||||
tstart = time()
|
||||
_iter_scores = qc.commons.parallel(
|
||||
self._params_eval,
|
||||
[(params, training) for params in hyper[ri]],
|
||||
parallel=parallel,
|
||||
)
|
||||
_best_iter_score = np.min(
|
||||
[s for _, s, _ in _iter_scores if s is not None]
|
||||
)
|
||||
|
||||
log.debug(
|
||||
f"[iter {i}] best score = {_best_iter_score:.8f} [took {time() - tstart:.3f}s]"
|
||||
)
|
||||
scores += _iter_scores
|
||||
|
||||
_check, best_score, iter_from_improv = self.__stop_condition(
|
||||
_best_iter_score, best_score, iter_from_improv
|
||||
)
|
||||
if _check:
|
||||
break
|
||||
|
||||
return scores
|
||||
|
||||
def __stop_condition(self, best_iter_score, best_score, iter_from_improv):
|
||||
if best_iter_score < best_score:
|
||||
_improv = best_score - best_iter_score
|
||||
best_score = best_iter_score
|
||||
else:
|
||||
_improv = 0
|
||||
|
||||
if _improv > self.ERR_THRESHOLD:
|
||||
iter_from_improv = 0
|
||||
else:
|
||||
iter_from_improv += 1
|
||||
|
||||
return iter_from_improv > self.MAX_ITER_IMPROV, best_score, iter_from_improv
|
||||
|
||||
|
||||
class HalvingSearchAE(GridSearchAE):
|
||||
def _select_scores(self, hyper, training: LabelledCollection):
|
||||
log = logger()
|
||||
hyper = np.array(hyper)
|
||||
|
||||
threshold = 22
|
||||
factor = 3
|
||||
n_steps = math.ceil(math.log(len(hyper) / threshold, factor))
|
||||
steps = np.logspace(n_steps, 0, base=1.0 / factor, num=n_steps + 1)
|
||||
with Parallel(n_jobs=self.n_jobs, verbose=1) as parallel:
|
||||
for _step in steps:
|
||||
tstart = time()
|
||||
_training, _ = (
|
||||
training.split_stratified(train_prop=_step)
|
||||
if _step < 1.0
|
||||
else (training, None)
|
||||
)
|
||||
|
||||
results = qc.commons.parallel(
|
||||
self._params_eval,
|
||||
[(params, _training) for params in hyper],
|
||||
parallel=parallel,
|
||||
)
|
||||
scores = [(1.0 if s is None else s) for _, s, _ in results]
|
||||
res_hyper = np.array([h for h, _, _ in results], dtype="object")
|
||||
sorted_scores_idx = np.argsort(scores)
|
||||
best_score = scores[sorted_scores_idx[0]]
|
||||
hyper = res_hyper[
|
||||
sorted_scores_idx[: round(len(res_hyper) * (1.0 / factor))]
|
||||
]
|
||||
|
||||
log.debug(
|
||||
f"[step {_step}] best score = {best_score:.8f} [took {time() - tstart:.3f}s]"
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
class SpiderSearchAE(GridSearchAE):
|
||||
def __init__(
|
||||
self,
|
||||
model: BaseAccuracyEstimator,
|
||||
param_grid: dict,
|
||||
protocol: AbstractProtocol,
|
||||
error: Union[Callable, str] = qc.error.maccd,
|
||||
refit=True,
|
||||
n_jobs=None,
|
||||
verbose=False,
|
||||
err_threshold=1e-4,
|
||||
max_iter_improv=0,
|
||||
pd_th_min=1,
|
||||
best_width=2,
|
||||
):
|
||||
super().__init__(
|
||||
model=model,
|
||||
param_grid=param_grid,
|
||||
protocol=protocol,
|
||||
error=error,
|
||||
refit=refit,
|
||||
n_jobs=n_jobs,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.err_threshold = err_threshold
|
||||
self.max_iter_improv = max_iter_improv
|
||||
self.pd_th_min = pd_th_min
|
||||
self.best_width = best_width
|
||||
|
||||
def _select_scores(self, hyper, training: LabelledCollection):
|
||||
log = logger()
|
||||
hyper = np.array(hyper)
|
||||
_n_jobs = os.cpu_count() + 1 + self.n_jobs if self.n_jobs < 0 else self.n_jobs
|
||||
batch_size = _n_jobs
|
||||
|
||||
rand_index = np.arange(len(hyper))
|
||||
np.random.shuffle(rand_index)
|
||||
rand_index = rand_index[:batch_size]
|
||||
remaining_index = np.setdiff1d(np.arange(len(hyper)), rand_index)
|
||||
_hyper, _hyper_remaining = hyper[rand_index], hyper[remaining_index]
|
||||
|
||||
scores = []
|
||||
best_score, last_best, iter_from_improv = np.inf, np.inf, 0
|
||||
with Parallel(n_jobs=self.n_jobs, verbose=1) as parallel:
|
||||
while len(_hyper) > 0:
|
||||
# log.debug(f"{len(_hyper_remaining)=}")
|
||||
tstart = time()
|
||||
_iter_scores = qc.commons.parallel(
|
||||
self._params_eval,
|
||||
[(params, training) for params in _hyper],
|
||||
parallel=parallel,
|
||||
)
|
||||
|
||||
# if all scores are None, select a new random batch
|
||||
if all([s[1] is None for s in _iter_scores]):
|
||||
rand_index = np.arange(len(_hyper_remaining))
|
||||
np.random.shuffle(rand_index)
|
||||
rand_index = rand_index[:batch_size]
|
||||
remaining_index = np.setdiff1d(
|
||||
np.arange(len(_hyper_remaining)), rand_index
|
||||
)
|
||||
_hyper = _hyper_remaining[rand_index]
|
||||
_hyper_remaining = _hyper_remaining[remaining_index]
|
||||
continue
|
||||
|
||||
_sorted_idx = np.argsort(
|
||||
[1.0 if s is None else s for _, s, _ in _iter_scores]
|
||||
)
|
||||
_sorted_scores = np.array(_iter_scores, dtype="object")[_sorted_idx]
|
||||
_best_iter_params = np.array(
|
||||
[p for p, _, _ in _sorted_scores], dtype="object"
|
||||
)
|
||||
_best_iter_scores = np.array(
|
||||
[s for _, s, _ in _sorted_scores], dtype="object"
|
||||
)
|
||||
|
||||
for i, (_score, _param) in enumerate(
|
||||
zip(
|
||||
_best_iter_scores[: self.best_width],
|
||||
_best_iter_params[: self.best_width],
|
||||
)
|
||||
):
|
||||
log.debug(
|
||||
f"[size={len(_hyper)},place={i+1}] best score = {_score:.8f}; "
|
||||
f"best param = {_param} [took {time() - tstart:.3f}s]"
|
||||
)
|
||||
scores += _iter_scores
|
||||
|
||||
_improv = best_score - _best_iter_scores[0]
|
||||
_improv_last = last_best - _best_iter_scores[0]
|
||||
if _improv > self.err_threshold:
|
||||
iter_from_improv = 0
|
||||
best_score = _best_iter_scores[0]
|
||||
elif _improv_last < 0:
|
||||
iter_from_improv += 1
|
||||
|
||||
last_best = _best_iter_scores[0]
|
||||
|
||||
if iter_from_improv > self.max_iter_improv:
|
||||
break
|
||||
|
||||
_new_hyper = np.array([], dtype="object")
|
||||
for _base_param in _best_iter_params[: self.best_width]:
|
||||
_rem_pds = np.array(
|
||||
[
|
||||
self.__param_distance(_base_param, h)
|
||||
for h in _hyper_remaining
|
||||
]
|
||||
)
|
||||
_rem_pd_sort_idx = np.argsort(_rem_pds)
|
||||
# _min_pd = np.min(_rem_pds)
|
||||
_min_pd_len = (_rem_pds <= self.pd_th_min).nonzero()[0].shape[0]
|
||||
_new_hyper_idx = _rem_pd_sort_idx[:_min_pd_len]
|
||||
_hyper_rem_idx = np.setdiff1d(
|
||||
np.arange(len(_hyper_remaining)), _new_hyper_idx
|
||||
)
|
||||
_new_hyper = np.concatenate(
|
||||
[_new_hyper, _hyper_remaining[_new_hyper_idx]]
|
||||
)
|
||||
_hyper_remaining = _hyper_remaining[_hyper_rem_idx]
|
||||
_hyper = _new_hyper
|
||||
|
||||
return scores
|
||||
|
||||
def __param_distance(self, param1, param2):
|
||||
score = 0
|
||||
for k, v in param1.items():
|
||||
if param2[k] != v:
|
||||
score += 1
|
||||
|
||||
return score
|
|
@ -0,0 +1,68 @@
|
|||
from pathlib import Path
|
||||
|
||||
|
||||
class BasePlot:
|
||||
@classmethod
|
||||
def save_fig(cls, fig, base_path, title) -> Path:
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def plot_diagonal(
|
||||
cls,
|
||||
reference,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="true",
|
||||
y_label="estim.",
|
||||
fixed_lim=False,
|
||||
legend=True,
|
||||
):
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def plot_delta(
|
||||
cls,
|
||||
base_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
stdevs=None,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="prevs.",
|
||||
y_label="error",
|
||||
legend=True,
|
||||
):
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def plot_shift(
|
||||
cls,
|
||||
shift_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
counts=None,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="true",
|
||||
y_label="estim.",
|
||||
legend=True,
|
||||
):
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def plot_fit_scores(
|
||||
train_prevs,
|
||||
scores,
|
||||
*,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="prev.",
|
||||
y_label="position",
|
||||
legend=True,
|
||||
):
|
||||
...
|
|
@ -0,0 +1,238 @@
|
|||
from pathlib import Path
|
||||
from re import X
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from cycler import cycler
|
||||
from sklearn import base
|
||||
|
||||
from quacc.legacy.plot.base import BasePlot
|
||||
from quacc.utils import commons
|
||||
|
||||
matplotlib.use("agg")
|
||||
|
||||
|
||||
class MplPlot(BasePlot):
|
||||
def _get_markers(self, n: int):
|
||||
ls = "ovx+sDph*^1234X><.Pd"
|
||||
if n > len(ls):
|
||||
ls = ls * (n / len(ls) + 1)
|
||||
return list(ls)[:n]
|
||||
|
||||
def save_fig(self, fig, base_path, title) -> Path:
|
||||
if base_path is None:
|
||||
base_path = commons.get_quacc_home() / "plots"
|
||||
output_path = base_path / f"{title}.png"
|
||||
fig.savefig(output_path, bbox_inches="tight")
|
||||
return output_path
|
||||
|
||||
def plot_delta(
|
||||
self,
|
||||
base_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
stdevs=None,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="prevs.",
|
||||
y_label="error",
|
||||
legend=True,
|
||||
):
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_aspect("auto")
|
||||
ax.grid()
|
||||
|
||||
NUM_COLORS = len(data)
|
||||
cm = plt.get_cmap("tab10")
|
||||
if NUM_COLORS > 10:
|
||||
cm = plt.get_cmap("tab20")
|
||||
cy = cycler(color=[cm(i) for i in range(NUM_COLORS)])
|
||||
|
||||
# base_prevs = base_prevs[:, pos_class]
|
||||
if isinstance(base_prevs[0], float):
|
||||
base_prevs = np.around([(1 - bp, bp) for bp in base_prevs], decimals=4)
|
||||
str_base_prevs = [str(tuple(bp)) for bp in base_prevs]
|
||||
# xticks = [str(bp) for bp in base_prevs]
|
||||
xticks = np.arange(len(base_prevs))
|
||||
for method, deltas, _cy in zip(columns, data, cy):
|
||||
ax.plot(
|
||||
xticks,
|
||||
deltas,
|
||||
label=method,
|
||||
color=_cy["color"],
|
||||
linestyle="-",
|
||||
marker="o",
|
||||
markersize=3,
|
||||
zorder=2,
|
||||
)
|
||||
if stdevs is not None:
|
||||
_col_idx = np.where(columns == method)[0]
|
||||
stdev = stdevs[_col_idx].flatten()
|
||||
nn_idx = np.intersect1d(
|
||||
np.where(deltas != np.nan)[0],
|
||||
np.where(stdev != np.nan)[0],
|
||||
)
|
||||
_bps, _ds, _st = xticks[nn_idx], deltas[nn_idx], stdev[nn_idx]
|
||||
ax.fill_between(
|
||||
_bps,
|
||||
_ds - _st,
|
||||
_ds + _st,
|
||||
color=_cy["color"],
|
||||
alpha=0.25,
|
||||
)
|
||||
|
||||
def format_fn(tick_val, tick_pos):
|
||||
if int(tick_val) in xticks:
|
||||
return str_base_prevs[int(tick_val)]
|
||||
|
||||
return ""
|
||||
|
||||
ax.xaxis.set_major_locator(plt.MaxNLocator(nbins=6, integer=True, prune="both"))
|
||||
ax.xaxis.set_major_formatter(format_fn)
|
||||
|
||||
ax.set(
|
||||
xlabel=f"{x_label} prevalence",
|
||||
ylabel=y_label,
|
||||
title=title,
|
||||
)
|
||||
|
||||
if legend:
|
||||
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
|
||||
|
||||
return fig
|
||||
|
||||
def plot_diagonal(
|
||||
self,
|
||||
reference,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="true",
|
||||
y_label="estim.",
|
||||
legend=True,
|
||||
):
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_aspect("auto")
|
||||
ax.grid()
|
||||
ax.set_aspect("equal")
|
||||
|
||||
NUM_COLORS = len(data)
|
||||
cm = plt.get_cmap("tab10")
|
||||
if NUM_COLORS > 10:
|
||||
cm = plt.get_cmap("tab20")
|
||||
cy = cycler(
|
||||
color=[cm(i) for i in range(NUM_COLORS)],
|
||||
marker=self._get_markers(NUM_COLORS),
|
||||
)
|
||||
|
||||
reference = np.array(reference)
|
||||
x_ticks = np.unique(reference)
|
||||
x_ticks.sort()
|
||||
|
||||
for deltas, _cy in zip(data, cy):
|
||||
ax.plot(
|
||||
reference,
|
||||
deltas,
|
||||
color=_cy["color"],
|
||||
linestyle="None",
|
||||
marker=_cy["marker"],
|
||||
markersize=3,
|
||||
zorder=2,
|
||||
alpha=0.25,
|
||||
)
|
||||
|
||||
# ensure limits are equal for both axes
|
||||
_alims = np.stack(((ax.get_xlim(), ax.get_ylim())), axis=-1)
|
||||
_lims = np.array([f(ls) for f, ls in zip([np.min, np.max], _alims)])
|
||||
ax.set(xlim=tuple(_lims), ylim=tuple(_lims))
|
||||
|
||||
for method, deltas, _cy in zip(columns, data, cy):
|
||||
slope, interc = np.polyfit(reference, deltas, 1)
|
||||
y_lr = np.array([slope * x + interc for x in _lims])
|
||||
ax.plot(
|
||||
_lims,
|
||||
y_lr,
|
||||
label=method,
|
||||
color=_cy["color"],
|
||||
linestyle="-",
|
||||
markersize="0",
|
||||
zorder=1,
|
||||
)
|
||||
|
||||
# plot reference line
|
||||
ax.plot(
|
||||
_lims,
|
||||
_lims,
|
||||
color="black",
|
||||
linestyle="--",
|
||||
markersize=0,
|
||||
zorder=1,
|
||||
)
|
||||
|
||||
ax.set(xlabel=x_label, ylabel=y_label, title=title)
|
||||
|
||||
if legend:
|
||||
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
|
||||
|
||||
return fig
|
||||
|
||||
def plot_shift(
|
||||
self,
|
||||
shift_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
counts=None,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="true",
|
||||
y_label="estim.",
|
||||
legend=True,
|
||||
):
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_aspect("auto")
|
||||
ax.grid()
|
||||
|
||||
NUM_COLORS = len(data)
|
||||
cm = plt.get_cmap("tab10")
|
||||
if NUM_COLORS > 10:
|
||||
cm = plt.get_cmap("tab20")
|
||||
cy = cycler(color=[cm(i) for i in range(NUM_COLORS)])
|
||||
|
||||
# shift_prevs = shift_prevs[:, pos_class]
|
||||
for method, shifts, _cy in zip(columns, data, cy):
|
||||
ax.plot(
|
||||
shift_prevs,
|
||||
shifts,
|
||||
label=method,
|
||||
color=_cy["color"],
|
||||
linestyle="-",
|
||||
marker="o",
|
||||
markersize=3,
|
||||
zorder=2,
|
||||
)
|
||||
if counts is not None:
|
||||
_col_idx = np.where(columns == method)[0]
|
||||
count = counts[_col_idx].flatten()
|
||||
for prev, shift, cnt in zip(shift_prevs, shifts, count):
|
||||
label = f"{cnt}"
|
||||
plt.annotate(
|
||||
label,
|
||||
(prev, shift),
|
||||
textcoords="offset points",
|
||||
xytext=(0, 10),
|
||||
ha="center",
|
||||
color=_cy["color"],
|
||||
fontsize=12.0,
|
||||
)
|
||||
|
||||
ax.set(xlabel=x_label, ylabel=y_label, title=title)
|
||||
|
||||
if legend:
|
||||
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
|
||||
|
||||
return fig
|
|
@ -0,0 +1,197 @@
|
|||
from quacc.legacy.plot.base import BasePlot
|
||||
from quacc.legacy.plot.mpl import MplPlot
|
||||
from quacc.legacy.plot.plotly import PlotlyPlot
|
||||
|
||||
__backend: BasePlot = MplPlot()
|
||||
|
||||
|
||||
def get_backend(name, theme=None):
|
||||
match name:
|
||||
case "matplotlib" | "mpl":
|
||||
return MplPlot()
|
||||
case "plotly":
|
||||
return PlotlyPlot(theme=theme)
|
||||
case _:
|
||||
return MplPlot()
|
||||
|
||||
|
||||
def plot_delta(
|
||||
base_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
stdevs=None,
|
||||
pos_class=1,
|
||||
metric="acc",
|
||||
name="default",
|
||||
train_prev=None,
|
||||
legend=True,
|
||||
avg=None,
|
||||
save_fig=False,
|
||||
base_path=None,
|
||||
backend=None,
|
||||
):
|
||||
backend = __backend if backend is None else backend
|
||||
_base_title = "delta_stdev" if stdevs is not None else "delta"
|
||||
if train_prev is not None:
|
||||
t_prev_pos = int(round(train_prev[pos_class] * 100))
|
||||
title = f"{_base_title}_{name}_{t_prev_pos}_{metric}"
|
||||
else:
|
||||
title = f"{_base_title}_{name}_avg_{avg}_{metric}"
|
||||
|
||||
if avg is None or avg == "train":
|
||||
x_label = "Test Prevalence"
|
||||
else:
|
||||
x_label = "Train Prevalence"
|
||||
if metric == "acc":
|
||||
y_label = "Prediction Error for Vanilla Accuracy"
|
||||
elif metric == "f1":
|
||||
y_label = "Prediction Error for F1"
|
||||
else:
|
||||
y_label = f"{metric} error"
|
||||
fig = backend.plot_delta(
|
||||
base_prevs,
|
||||
columns,
|
||||
data,
|
||||
stdevs=stdevs,
|
||||
pos_class=pos_class,
|
||||
title=title,
|
||||
x_label=x_label,
|
||||
y_label=y_label,
|
||||
legend=legend,
|
||||
)
|
||||
|
||||
if save_fig:
|
||||
output_path = backend.save_fig(fig, base_path, title)
|
||||
return fig, output_path
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_diagonal(
|
||||
reference,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
pos_class=1,
|
||||
metric="acc",
|
||||
name="default",
|
||||
train_prev=None,
|
||||
fixed_lim=False,
|
||||
legend=True,
|
||||
save_fig=False,
|
||||
base_path=None,
|
||||
backend=None,
|
||||
):
|
||||
backend = __backend if backend is None else backend
|
||||
if train_prev is not None:
|
||||
t_prev_pos = int(round(train_prev[pos_class] * 100))
|
||||
title = f"diagonal_{name}_{t_prev_pos}_{metric}"
|
||||
else:
|
||||
title = f"diagonal_{name}_{metric}"
|
||||
|
||||
if metric == "acc":
|
||||
x_label = "True Vanilla Accuracy"
|
||||
y_label = "Estimated Vanilla Accuracy"
|
||||
else:
|
||||
x_label = f"true {metric}"
|
||||
y_label = f"estim. {metric}"
|
||||
fig = backend.plot_diagonal(
|
||||
reference,
|
||||
columns,
|
||||
data,
|
||||
pos_class=pos_class,
|
||||
title=title,
|
||||
x_label=x_label,
|
||||
y_label=y_label,
|
||||
fixed_lim=fixed_lim,
|
||||
legend=legend,
|
||||
)
|
||||
|
||||
if save_fig:
|
||||
output_path = backend.save_fig(fig, base_path, title)
|
||||
return fig, output_path
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_shift(
|
||||
shift_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
counts=None,
|
||||
pos_class=1,
|
||||
metric="acc",
|
||||
name="default",
|
||||
train_prev=None,
|
||||
legend=True,
|
||||
save_fig=False,
|
||||
base_path=None,
|
||||
backend=None,
|
||||
):
|
||||
backend = __backend if backend is None else backend
|
||||
if train_prev is not None:
|
||||
t_prev_pos = int(round(train_prev[pos_class] * 100))
|
||||
title = f"shift_{name}_{t_prev_pos}_{metric}"
|
||||
else:
|
||||
title = f"shift_{name}_avg_{metric}"
|
||||
|
||||
x_label = "Amount of Prior Probability Shift"
|
||||
if metric == "acc":
|
||||
y_label = "Prediction Error for Vanilla Accuracy"
|
||||
elif metric == "f1":
|
||||
y_label = "Prediction Error for F1"
|
||||
else:
|
||||
y_label = f"{metric} error"
|
||||
fig = backend.plot_shift(
|
||||
shift_prevs,
|
||||
columns,
|
||||
data,
|
||||
counts=counts,
|
||||
pos_class=pos_class,
|
||||
title=title,
|
||||
x_label=x_label,
|
||||
y_label=y_label,
|
||||
legend=legend,
|
||||
)
|
||||
|
||||
if save_fig:
|
||||
output_path = backend.save_fig(fig, base_path, title)
|
||||
return fig, output_path
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_fit_scores(
|
||||
train_prevs,
|
||||
scores,
|
||||
*,
|
||||
pos_class=1,
|
||||
metric="acc",
|
||||
name="default",
|
||||
legend=True,
|
||||
save_fig=False,
|
||||
base_path=None,
|
||||
backend=None,
|
||||
):
|
||||
backend = __backend if backend is None else backend
|
||||
title = f"fit_scores_{name}_avg_{metric}"
|
||||
|
||||
x_label = "train prev."
|
||||
y_label = "position"
|
||||
fig = backend.plot_fit_scores(
|
||||
train_prevs,
|
||||
scores,
|
||||
pos_class=pos_class,
|
||||
title=title,
|
||||
x_label=x_label,
|
||||
y_label=y_label,
|
||||
legend=legend,
|
||||
)
|
||||
|
||||
if save_fig:
|
||||
output_path = backend.save_fig(fig, base_path, title)
|
||||
return fig, output_path
|
||||
|
||||
return fig
|
|
@ -0,0 +1,330 @@
|
|||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import plotly
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from quacc.legacy.evaluation.estimators import CE, _renames
|
||||
from quacc.legacy.plot.base import BasePlot
|
||||
|
||||
|
||||
class PlotCfg:
|
||||
def __init__(self, mode, lwidth, font=None, legend=None, template="seaborn"):
|
||||
self.mode = mode
|
||||
self.lwidth = lwidth
|
||||
self.legend = {} if legend is None else legend
|
||||
self.font = {} if font is None else font
|
||||
self.template = template
|
||||
|
||||
|
||||
web_cfg = PlotCfg("lines+markers", 2)
|
||||
png_cfg_old = PlotCfg(
|
||||
"lines",
|
||||
5,
|
||||
legend=dict(
|
||||
orientation="h",
|
||||
yanchor="bottom",
|
||||
xanchor="right",
|
||||
y=1.02,
|
||||
x=1,
|
||||
font=dict(size=24),
|
||||
),
|
||||
font=dict(size=24),
|
||||
# template="ggplot2",
|
||||
)
|
||||
png_cfg = PlotCfg(
|
||||
"lines",
|
||||
5,
|
||||
legend=dict(
|
||||
font=dict(
|
||||
family="DejaVu Sans",
|
||||
size=24,
|
||||
),
|
||||
),
|
||||
font=dict(size=24),
|
||||
# template="ggplot2",
|
||||
)
|
||||
|
||||
_cfg = png_cfg
|
||||
|
||||
|
||||
class PlotlyPlot(BasePlot):
|
||||
__themes = defaultdict(
|
||||
lambda: {
|
||||
"template": _cfg.template,
|
||||
}
|
||||
)
|
||||
__themes = __themes | {
|
||||
"dark": {
|
||||
"template": "plotly_dark",
|
||||
},
|
||||
}
|
||||
|
||||
def __init__(self, theme=None):
|
||||
self.theme = PlotlyPlot.__themes[theme]
|
||||
self.rename = True
|
||||
|
||||
def hex_to_rgb(self, hex: str, t: float | None = None):
|
||||
hex = hex.lstrip("#")
|
||||
rgb = [int(hex[i : i + 2], 16) for i in [0, 2, 4]]
|
||||
if t is not None:
|
||||
rgb.append(t)
|
||||
return f"{'rgb' if t is None else 'rgba'}{str(tuple(rgb))}"
|
||||
|
||||
def get_colors(self, num):
|
||||
match num:
|
||||
case v if v > 10:
|
||||
__colors = plotly.colors.qualitative.Light24
|
||||
case _:
|
||||
__colors = plotly.colors.qualitative.G10
|
||||
|
||||
def __generator(cs):
|
||||
while True:
|
||||
for c in cs:
|
||||
yield c
|
||||
|
||||
return __generator(__colors)
|
||||
|
||||
def update_layout(self, fig, title, x_label, y_label):
|
||||
fig.update_layout(
|
||||
# title=title,
|
||||
xaxis_title=x_label,
|
||||
yaxis_title=y_label,
|
||||
template=self.theme["template"],
|
||||
font=_cfg.font,
|
||||
legend=_cfg.legend,
|
||||
)
|
||||
|
||||
def save_fig(self, fig, base_path, title) -> Path:
|
||||
return None
|
||||
|
||||
def rename_plots(
|
||||
self,
|
||||
columns,
|
||||
):
|
||||
if not self.rename:
|
||||
return columns
|
||||
|
||||
new_columns = []
|
||||
for c in columns:
|
||||
nc = c
|
||||
for old, new in _renames.items():
|
||||
if c.startswith(old):
|
||||
nc = new + c[len(old) :]
|
||||
|
||||
new_columns.append(nc)
|
||||
|
||||
return np.array(new_columns)
|
||||
|
||||
def plot_delta(
|
||||
self,
|
||||
base_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
stdevs=None,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="prevs.",
|
||||
y_label="error",
|
||||
legend=True,
|
||||
) -> go.Figure:
|
||||
fig = go.Figure()
|
||||
if isinstance(base_prevs[0], float):
|
||||
base_prevs = np.around([(1 - bp, bp) for bp in base_prevs], decimals=4)
|
||||
x = [str(tuple(bp)) for bp in base_prevs]
|
||||
named_data = {c: d for c, d in zip(columns, data)}
|
||||
r_columns = {c: r for c, r in zip(columns, self.rename_plots(columns))}
|
||||
line_colors = self.get_colors(len(columns))
|
||||
# for name, delta in zip(columns, data):
|
||||
columns = np.array(CE.name.sort(columns))
|
||||
for name in columns:
|
||||
delta = named_data[name]
|
||||
r_name = r_columns[name]
|
||||
color = next(line_colors)
|
||||
_line = [
|
||||
go.Scatter(
|
||||
x=x,
|
||||
y=delta,
|
||||
mode=_cfg.mode,
|
||||
name=r_name,
|
||||
line=dict(color=self.hex_to_rgb(color), width=_cfg.lwidth),
|
||||
hovertemplate="prev.: %{x}<br>error: %{y:,.4f}",
|
||||
)
|
||||
]
|
||||
_error = []
|
||||
if stdevs is not None:
|
||||
_col_idx = np.where(columns == name)[0]
|
||||
stdev = stdevs[_col_idx].flatten()
|
||||
_error = [
|
||||
go.Scatter(
|
||||
x=np.concatenate([x, x[::-1]]),
|
||||
y=np.concatenate([delta - stdev, (delta + stdev)[::-1]]),
|
||||
name=int(_col_idx[0]),
|
||||
fill="toself",
|
||||
fillcolor=self.hex_to_rgb(color, t=0.2),
|
||||
line=dict(color="rgba(255, 255, 255, 0)"),
|
||||
hoverinfo="skip",
|
||||
showlegend=False,
|
||||
)
|
||||
]
|
||||
fig.add_traces(_line + _error)
|
||||
|
||||
self.update_layout(fig, title, x_label, y_label)
|
||||
return fig
|
||||
|
||||
def plot_diagonal(
|
||||
self,
|
||||
reference,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="true",
|
||||
y_label="estim.",
|
||||
fixed_lim=False,
|
||||
legend=True,
|
||||
) -> go.Figure:
|
||||
fig = go.Figure()
|
||||
x = reference
|
||||
line_colors = self.get_colors(len(columns))
|
||||
|
||||
if fixed_lim:
|
||||
_lims = np.array([[0.0, 1.0], [0.0, 1.0]])
|
||||
else:
|
||||
_edges = (
|
||||
np.min([np.min(x), np.min(data)]),
|
||||
np.max([np.max(x), np.max(data)]),
|
||||
)
|
||||
_lims = np.array([[_edges[0], _edges[1]], [_edges[0], _edges[1]]])
|
||||
|
||||
named_data = {c: d for c, d in zip(columns, data)}
|
||||
r_columns = {c: r for c, r in zip(columns, self.rename_plots(columns))}
|
||||
columns = np.array(CE.name.sort(columns))
|
||||
for name in columns:
|
||||
val = named_data[name]
|
||||
r_name = r_columns[name]
|
||||
color = next(line_colors)
|
||||
slope, interc = np.polyfit(x, val, 1)
|
||||
# y_lr = np.array([slope * _x + interc for _x in _lims[0]])
|
||||
fig.add_traces(
|
||||
[
|
||||
go.Scatter(
|
||||
x=x,
|
||||
y=val,
|
||||
customdata=np.stack((val - x,), axis=-1),
|
||||
mode="markers",
|
||||
name=r_name,
|
||||
marker=dict(color=self.hex_to_rgb(color, t=0.5)),
|
||||
hovertemplate="true acc: %{x:,.4f}<br>estim. acc: %{y:,.4f}<br>acc err.: %{customdata[0]:,.4f}",
|
||||
# showlegend=False,
|
||||
),
|
||||
# go.Scatter(
|
||||
# x=[x[-1]],
|
||||
# y=[val[-1]],
|
||||
# mode="markers",
|
||||
# marker=dict(color=self.hex_to_rgb(color), size=8),
|
||||
# name=r_name,
|
||||
# ),
|
||||
# go.Scatter(
|
||||
# x=_lims[0],
|
||||
# y=y_lr,
|
||||
# mode="lines",
|
||||
# name=name,
|
||||
# line=dict(color=self.hex_to_rgb(color), width=3),
|
||||
# showlegend=False,
|
||||
# ),
|
||||
]
|
||||
)
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=_lims[0],
|
||||
y=_lims[1],
|
||||
mode="lines",
|
||||
name="reference",
|
||||
showlegend=False,
|
||||
line=dict(color=self.hex_to_rgb("#000000"), dash="dash"),
|
||||
)
|
||||
)
|
||||
|
||||
self.update_layout(fig, title, x_label, y_label)
|
||||
fig.update_layout(
|
||||
autosize=False,
|
||||
width=1300,
|
||||
height=1000,
|
||||
yaxis_scaleanchor="x",
|
||||
yaxis_scaleratio=1.0,
|
||||
yaxis_range=[-0.1, 1.1],
|
||||
)
|
||||
return fig
|
||||
|
||||
def plot_shift(
|
||||
self,
|
||||
shift_prevs,
|
||||
columns,
|
||||
data,
|
||||
*,
|
||||
counts=None,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="true",
|
||||
y_label="estim.",
|
||||
legend=True,
|
||||
) -> go.Figure:
|
||||
fig = go.Figure()
|
||||
# x = shift_prevs[:, pos_class]
|
||||
x = shift_prevs
|
||||
line_colors = self.get_colors(len(columns))
|
||||
named_data = {c: d for c, d in zip(columns, data)}
|
||||
r_columns = {c: r for c, r in zip(columns, self.rename_plots(columns))}
|
||||
columns = np.array(CE.name.sort(columns))
|
||||
for name in columns:
|
||||
delta = named_data[name]
|
||||
r_name = r_columns[name]
|
||||
col_idx = (columns == name).nonzero()[0][0]
|
||||
color = next(line_colors)
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=x,
|
||||
y=delta,
|
||||
customdata=np.stack((counts[col_idx],), axis=-1),
|
||||
mode=_cfg.mode,
|
||||
name=r_name,
|
||||
line=dict(color=self.hex_to_rgb(color), width=_cfg.lwidth),
|
||||
hovertemplate="shift: %{x}<br>error: %{y}"
|
||||
+ "<br>count: %{customdata[0]}"
|
||||
if counts is not None
|
||||
else "",
|
||||
)
|
||||
)
|
||||
|
||||
self.update_layout(fig, title, x_label, y_label)
|
||||
return fig
|
||||
|
||||
def plot_fit_scores(
|
||||
self,
|
||||
train_prevs,
|
||||
scores,
|
||||
*,
|
||||
pos_class=1,
|
||||
title="default",
|
||||
x_label="prev.",
|
||||
y_label="position",
|
||||
legend=True,
|
||||
) -> go.Figure:
|
||||
fig = go.Figure()
|
||||
# x = train_prevs
|
||||
x = [str(tuple(bp)) for bp in train_prevs]
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=x,
|
||||
y=scores,
|
||||
mode="lines+markers",
|
||||
showlegend=False,
|
||||
),
|
||||
)
|
||||
|
||||
self.update_layout(fig, title, x_label, y_label)
|
||||
return fig
|
Loading…
Reference in New Issue