QuAcc/quacc/evaluation.py

68 lines
2.3 KiB
Python
Raw Normal View History

from quapy.protocol import (
OnLabelledCollectionProtocol,
AbstractStochasticSeededProtocol,
)
2023-05-20 20:23:17 +02:00
import quapy as qp
from typing import Iterable, Callable, Union
from .estimator import AccuracyEstimator
2023-05-20 20:23:17 +02:00
import pandas as pd
import quacc.error as error
def estimate(estimator: AccuracyEstimator, protocol: AbstractStochasticSeededProtocol):
# ensure that the protocol returns a LabelledCollection for each iteration
protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection")
base_prevs, true_prevs, estim_prevs = [], [], []
for sample in protocol():
e_sample = estimator.extend(sample)
estim_prev = estimator.estimate(e_sample.X, ext=True)
base_prevs.append(sample.prevalence())
true_prevs.append(e_sample.prevalence())
estim_prevs.append(estim_prev)
return base_prevs, true_prevs, estim_prevs
2023-05-20 20:23:17 +02:00
def evaluation_report(
estimator: AccuracyEstimator,
protocol: AbstractStochasticSeededProtocol,
error_metrics: Iterable[Union[str, Callable]] = "all",
):
base_prevs, true_prevs, estim_prevs = estimate(estimator, protocol)
if error_metrics == "all":
error_metrics = ["mae", "rae", "mrae", "kld", "nkld", "f1e"]
error_funcs = [
error.from_name(e) if isinstance(e, str) else e for e in error_metrics
]
assert all(hasattr(e, "__call__") for e in error_funcs), "invalid error function"
error_names = [e.__name__ for e in error_funcs]
df_cols = ["base_prev", "true_prev", "estim_prev"] + error_names
if "f1e" in df_cols:
df_cols.remove("f1e")
df_cols.extend(["f1e_true", "f1e_estim"])
lst = []
for base_prev, true_prev, estim_prev in zip(base_prevs, true_prevs, estim_prevs):
series = {
"base_prev": base_prev,
"true_prev": true_prev,
"estim_prev": estim_prev,
}
for error_name, error_metric in zip(error_names, error_funcs):
if error_name == "f1e":
series["f1e_true"] = error_metric(true_prev)
series["f1e_estim"] = error_metric(estim_prev)
continue
score = error_metric(true_prev, estim_prev)
series[error_name] = score
lst.append(series)
df = pd.DataFrame(lst, columns=df_cols)
return df