Refactoring completed

This commit is contained in:
Lorenzo Volpi 2023-05-20 20:23:17 +02:00
parent 6ac18137fa
commit 5959a0d323
5 changed files with 84 additions and 10 deletions

View File

@ -7,7 +7,6 @@ from typing import List, Optional
class ExtendedCollection(LabelledCollection):
def __init__(
self,
b_coll: LabelledCollection,
instances: np.ndarray | sp.csr_matrix,
labels: np.ndarray,
classes: Optional[List] = None,

15
quacc/error.py Normal file
View File

@ -0,0 +1,15 @@
import quapy as qp
def from_name(err_name):
if err_name == 'f1e':
return f1e
else:
return qp.error.from_name(err_name)
def f1e(prev):
return 1 - f1_score(prev)
def f1_score(prev):
recall = prev[0] / (prev[0] + prev[1])
precision = prev[0] / (prev[0] + prev[2])
return 2 * (precision * recall) / (precision + recall)

View File

@ -46,7 +46,7 @@ def _extend_collection(base: LabelledCollection, pred_proba) -> ExtendedCollecti
]
)
return ExtendedCollection(n_x, n_y, [*range(0, n_classes * n_classes)])
return ExtendedCollection(n_x, n_y, classes=[*range(0, n_classes * n_classes)])
class AccuracyEstimator:
@ -65,7 +65,7 @@ class AccuracyEstimator:
# self.model.fit(*train.Xy)
if isinstance(train, LabelledCollection):
pred_prob_train = cross_val_predict(
self.model, train.Xy, method="predict_proba"
self.model, *train.Xy, method="predict_proba"
)
self.e_train = _extend_collection(train, pred_prob_train)
@ -84,5 +84,5 @@ class AccuracyEstimator:
estim_prev = self.q_model.quantify(e_inst)
return _check_prevalence_classes(
e_inst.classes_, self.q_model.classes_, estim_prev
self.e_train.classes_, self.q_model.classes_, estim_prev
)

View File

@ -2,8 +2,12 @@ from quapy.protocol import (
OnLabelledCollectionProtocol,
AbstractStochasticSeededProtocol,
)
import quapy as qp
from typing import Iterable, Callable, Union
from .estimator import AccuracyEstimator
import pandas as pd
import quacc.error as error
def estimate(estimator: AccuracyEstimator, protocol: AbstractStochasticSeededProtocol):
@ -21,5 +25,43 @@ def estimate(estimator: AccuracyEstimator, protocol: AbstractStochasticSeededPro
return base_prevs, true_prevs, estim_prevs
def evaluate():
pass
def evaluation_report(
estimator: AccuracyEstimator,
protocol: AbstractStochasticSeededProtocol,
error_metrics: Iterable[Union[str, Callable]] = "all",
):
base_prevs, true_prevs, estim_prevs = estimate(estimator, protocol)
if error_metrics == "all":
error_metrics = ["mae", "rae", "mrae", "kld", "nkld", "f1e"]
error_funcs = [
error.from_name(e) if isinstance(e, str) else e for e in error_metrics
]
assert all(hasattr(e, "__call__") for e in error_funcs), "invalid error function"
error_names = [e.__name__ for e in error_funcs]
df_cols = ["base_prev", "true_prev", "estim_prev"] + error_names
if "f1e" in df_cols:
df_cols.remove("f1e")
df_cols.extend(["f1e_true", "f1e_estim"])
lst = []
for base_prev, true_prev, estim_prev in zip(base_prevs, true_prevs, estim_prevs):
series = {
"base_prev": base_prev,
"true_prev": true_prev,
"estim_prev": estim_prev,
}
for error_name, error_metric in zip(error_names, error_funcs):
if error_name == "f1e":
series["f1e_true"] = error_metric(true_prev)
series["f1e_estim"] = error_metric(estim_prev)
continue
score = error_metric(true_prev, estim_prev)
series[error_name] = score
lst.append(series)
df = pd.DataFrame(lst, columns=df_cols)
return df

View File

@ -2,10 +2,16 @@ import numpy as np
import quapy as qp
import scipy.sparse as sp
from quapy.data import LabelledCollection
from quapy.method.aggregative import SLD
from quapy.protocol import APP, AbstractStochasticSeededProtocol
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_predict
import quacc.evaluation as eval
from quacc.estimator import AccuracyEstimator
qp.environ['SAMPLE_SIZE'] = 100
# Extended classes
#
@ -86,7 +92,7 @@ def extend_and_quantify(
pred_prob_test = model.predict_proba(test.X)
_test = extend_collection(test, pred_prob_test)
_estim_prev = q_model.quantify(_test.instances)
# check that _estim_prev has all the classes and eventually fill the missing
# check that _estim_prev has all the classes and eventually fill the missing
# ones with 0
for _cls in _test.classes_:
if _cls not in q_model.classes_:
@ -133,9 +139,9 @@ def test_1(dataset_name):
orig_prevs, true_prevs, estim_prevs, errors = extend_and_quantify(
LogisticRegression(),
qp.method.aggregative.SLD(LogisticRegression()),
SLD(LogisticRegression()),
train,
APP(test, sample_size=100, n_prevalences=11, repeats=1),
APP(test, n_prevalences=11, repeats=1),
)
for orig_prev, true_prev, estim_prev, _errors in zip(
@ -149,6 +155,18 @@ def test_1(dataset_name):
print()
def test_2(dataset_name):
train, test = get_dataset(dataset_name)
model = LogisticRegression()
model.fit(*train.Xy)
estimator = AccuracyEstimator(model, SLD(LogisticRegression()))
estimator.fit(train)
df = eval.evaluation_report(
estimator, APP(test, n_prevalences=11, repeats=1)
)
print(df.to_string())
def main():
for dataset_name in [
# "hp",
@ -156,7 +174,7 @@ def main():
"spambase",
]:
print(dataset_name)
test_1(dataset_name)
test_2(dataset_name)
print("*" * 50)