wcag_AI_validation/scripts/esercitazione_12_2025/utils.py

106 lines
3.7 KiB
Python

import numpy as np
from transformers import BertTokenizer, BertModel
from sklearn.feature_extraction.text import TfidfVectorizer
from sentence_transformers import SentenceTransformer
import torch
from bert_score import score
from sklearn.metrics.pairwise import cosine_similarity as cosine_similarity_sklearn
import re
def preprocess_text(text):
text = text.lower()
text = re.sub(r"[^\w\s]", "", text) # Remove punctuation
text = re.sub(r"\s+", " ", text).strip() # Normalize whitespace
return text
def cosine_similarity(a, b):
return np.dot(a, b) / (
np.linalg.norm(a) * np.linalg.norm(b) + 1e-10
) # Use epsilon for numerical stability
def semantic_similarity(text1, text2):
# Handle empty strings explicitly
if not text1.strip() or not text2.strip():
return 0.0
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")
inputs1 = tokenizer(
text1, return_tensors="pt"
) # no preprocess: The neural models are trained to handle natural text variations
inputs2 = tokenizer(text2, return_tensors="pt")
model.eval()
with torch.no_grad():
outputs1 = model(**inputs1)
outputs2 = model(**inputs2)
embedding1 = (
outputs1.last_hidden_state.mean(dim=1).squeeze().numpy()
) # the average of all token embeddings as representation
embedding2 = outputs2.last_hidden_state.mean(dim=1).squeeze().numpy()
return cosine_similarity(embedding1, embedding2)
def semantic_similarity_sentence_transformer(text1, text2):
# Handle empty strings explicitly
if not text1.strip() or not text2.strip():
return 0.0
# Purpose-built for sentence embeddings
model = SentenceTransformer(
"all-MiniLM-L6-v2"
) # no preprocess: The neural models are trained to handle natural text variations
embeddings = model.encode(
[text1, text2],
output_value="sentence_embedding",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
) # params "sentence_embedding" to prodcuce only one representation per sentence (the average of token embeddings)
return cosine_similarity(embeddings[0], embeddings[1])
def extract_semantic_representation(text):
# Handle empty strings explicitly
if not text.strip():
return 0.0
# Purpose-built for sentence embeddings
model = SentenceTransformer(
"all-MiniLM-L6-v2"
) # no preprocess: The neural models are trained to handle natural text variations
embeddings = model.encode(
[text],
output_value="sentence_embedding",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
) # params "sentence_embedding" to prodcuce only one representation per sentence (the average of token embeddings)
return embeddings
def lexical_similarity(text1, text2):
#vectorizer = TfidfVectorizer(stop_words=None, analyzer="char", ngram_range=(1, 3))
vectorizer = TfidfVectorizer(analyzer="word", ngram_range=(1, 1))
text1 = preprocess_text(text1) # only lexical needs preprocessing
text2 = preprocess_text(text2)
tfidf_matrix = vectorizer.fit_transform([text1, text2])
vec1 = tfidf_matrix.toarray()[0]
vec2 = tfidf_matrix.toarray()[1]
return cosine_similarity(vec1, vec2)
def bert_score_similarity(texts1, texts2, batch=False):
P, R, F1 = (
score( # no preprocess: The neural models are trained to handle natural text variations
texts1,
texts2,
lang="en",
verbose=False,
model_type="bert-base-uncased",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
batch_size=32,
)
)
return F1.tolist() if batch else F1.item()