wcag_AI_validation/UI/wcag_validator_ui.py

686 lines
24 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#### To launch the script
# gradio wcag_validator_ui.py
# python wcag_validator_ui.py
import gradio as gr
import requests
from pathlib import Path
import sys
import pandas as pd
parent_dir = Path(__file__).parent.parent
sys.path.insert(0, str(parent_dir))
from dotenv import load_dotenv, find_dotenv
from dependences.utils import (
call_API_urlibrequest,
create_folder,
db_persistence_startup,
db_persistence_insert,
return_from_env_valid,
)
from dependences_ui.utils import *
import logging
import time
import json
import urllib.request
import urllib.parse
import os
import sqlite3
WCAG_VALIDATOR_RESTSERVER_HEADERS = [("Content-Type", "application/json")]
def process_dataframe(db_path, url, updated_df, user_state={}):
print("Processing dataframe to adjust columns...")
column_rating_name = "User Assessment for LLM Proposal"
# Get the assessment column
try:
updated_df[column_rating_name] = updated_df[column_rating_name].astype(int)
except ValueError:
return "Error: User Assessment for LLM Proposal must be an integer"
if (updated_df[column_rating_name] < 1).any() or (
updated_df[column_rating_name] > 5
).any():
return "Error: User Assessment for LLM Proposal must be between 1 and 5"
dataframe_json = updated_df.to_json(orient="records")
connection_db = sqlite3.connect(db_path)
json_user_str = json.dumps({"username": user_state["username"]}, ensure_ascii=False)
try:
# insert after everything to keep datetime aligned
db_persistence_insert(
connection_db=connection_db,
insert_type="wcag_user_llm_alttext_assessments",
page_url=url,
user=json_user_str,
llm_model="",
json_in_str=dataframe_json, # to improve
json_out_str="done via UI",
table="wcag_user_assessments",
)
except Exception as e:
print("Error inserting user assessment into database:", str(e))
finally:
if connection_db:
connection_db.close()
return "User assessment saved successfully!"
def load_images_from_json(json_input):
"""Extract URLs and alt text from JSON and create HTML gallery"""
try:
data = json_input
if "images" not in data or not data["images"]:
return "No images found in JSON", ""
images = data["images"]
info_text = f"Found {len(images)} image(s)"
print(f"Found {len(data['images'])} image(s)")
# Create HTML gallery with checkboxes and assessment forms
html = """
<style>
.image-gallery {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
gap: 20px;
padding: 20px;
}
.image-card {
border: 2px solid #e0e0e0;
border-radius: 8px;
padding: 10px;
background: white;
}
.image-card:has(input[type="checkbox"]:checked) {
border-color: #2196F3;
background: #a7c1c1;
}
.image-card img {
width: 100%;
height: 200px;
object-fit: scale-down;
border-radius: 4px;
}
.image-info {
margin-top: 10px;
}
.checkbox-label {
display: flex;
align-items: center;
gap: 8px;
cursor: pointer;
font-weight: 500;
}
.image-checkbox {
width: 18px;
height: 18px;
cursor: pointer;
accent-color: #2196F3;
}
.alt-text {
font-size: 14px;
color: #666;
margin-top: 5px;
}
.assessment-panel {
display: none;
margin-top: 15px;
padding: 10px;
background: #7896b9;
border-radius: 4px;
border: 1px solid #2196F3;
}
.assessment-panel.visible {
display: block;
}
.form-group {
margin: 10px 0;
}
.form-group label {
display: block;
font-weight: 500;
margin-bottom: 5px;
font-size: 13px;
}
.radio-container {
display: flex;
gap: 15px;
align-items: center;
}
.radio-option {
display: flex;
align-items: center;
gap: 5px;
cursor: pointer;
}
.radio-label {
font-weight: 500;
}
textarea {
width: 100%;
padding: 8px;
border: 1px solid #ccc;
border-radius: 4px;
font-size: 13px;
font-family: inherit;
resize: vertical;
}
</style>
<div class="image-gallery">
"""
for idx, img_data in enumerate(images):
url = img_data.get("url", "")
alt_text = img_data.get("alt_text", "No description")
html += f"""
<div class="image-card">
<img src="{url}" alt="{alt_text}" loading="lazy" onerror="this.src='data:image/svg+xml,%3Csvg xmlns=%22http://www.w3.org/2000/svg%22 width=%22200%22 height=%22200%22%3E%3Crect fill=%22%23ddd%22 width=%22200%22 height=%22200%22/%3E%3Ctext x=%2250%25%22 y=%2250%25%22 text-anchor=%22middle%22 dy=%22.3em%22 fill=%22%23999%22%3EImage not found%3C/text%3E%3C/svg%3E'">
<div class="image-info">
<label class="checkbox-label">
<input type="checkbox" class="image-checkbox" data-imgurl="{url}" data-index="{idx}"
onchange="
const panel = document.getElementById('panel-{idx}');
const checkedCount = document.querySelectorAll('.image-checkbox:checked').length;
if (this.checked) {{
if (checkedCount > 3) {{
this.checked = false;
alert('Maximum 3 images can be selected!');
return;
}}
panel.classList.add('visible');
}} else {{
panel.classList.remove('visible');
}}
">
Select #{idx + 1}
</label>
<div class="alt-text">Current alt_text: {alt_text}</div>
<div id="panel-{idx}" class="assessment-panel">
<div class="form-group">
<label>Rate current alt-text:</label>
<div class="radio-container">
<label class="radio-option">
<input type="radio" name="assessment-{idx}" value="1" data-index="{idx}">
<span class="radio-label">1</span>
</label>
<label class="radio-option">
<input type="radio" name="assessment-{idx}" value="2" data-index="{idx}">
<span class="radio-label">2</span>
</label>
<label class="radio-option">
<input type="radio" name="assessment-{idx}" value="3" data-index="{idx}" checked>
<span class="radio-label">3</span>
</label>
<label class="radio-option">
<input type="radio" name="assessment-{idx}" value="4" data-index="{idx}">
<span class="radio-label">4</span>
</label>
<label class="radio-option">
<input type="radio" name="assessment-{idx}" value="5" data-index="{idx}">
<span class="radio-label">5</span>
</label>
</div>
</div>
<div class="form-group">
<label>New alt-text:</label>
<textarea class="new-alt-text" data-index="{idx}" rows="3" placeholder="Enter improved alt-text...">{alt_text}</textarea>
</div>
</div>
<input type="hidden" class="original-alt" data-index="{idx}" value="{alt_text}" />
</div>
</div>
"""
# info_text += f"✓ Image {idx+1} alt_text: {alt_text}\n"
html += "</div>"
return info_text, html
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", ""
except Exception as e:
return f"Error: {str(e)}", ""
def load_llm_assessment_from_json(json_input):
try:
# Parse JSON input
data = json_input
if "mllm_validations" not in data or not data["mllm_validations"]:
print("no mllm_validations found")
return pd.DataFrame()
info_text = f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)\n\n"
print(
f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)"
)
data_frame = []
for idx, img_data in enumerate(
data["mllm_validations"]["mllm_alttext_assessments"], 1
):
original_alt_text_assessment = img_data["mllm_response"].get(
"original_alt_text_assessment", "No description"
)
new_alt_text = img_data["mllm_response"].get(
"new_alt_text", "No description"
)
alt_text_original = img_data.get("alt_text", "No alt_text provided")
data_frame.append(
{
"Original Alt Text": alt_text_original,
"LLM Assessment": original_alt_text_assessment,
"LLM Proposed Alt Text": new_alt_text,
}
)
df = pd.DataFrame(data_frame)
return df
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", []
except Exception as e:
return f"Error: {str(e)}", []
def make_alttext_llm_assessment_api_call(
url,
selected_images_json=[],
db_path=None,
wcag_rest_server_url="http://localhost:8000",
user_state={},
number_of_images=30,
):
print(
f"Making API call for llm assessment for {url} to {wcag_rest_server_url}/wcag_alttext_validation"
)
selected_images = json.loads(selected_images_json) if selected_images_json else []
# print("selected_images:", selected_images)
if not selected_images or len(selected_images) == 0:
info_text = "No images selected"
print(info_text)
return "LLM assessment not started", pd.DataFrame()
# prepare data for insertion
json_in_str = {}
json_out_str = {}
selected_urls = []
selected_alt_text_original = []
user_assessments = []
user_new_alt_texts = []
selected_image_id = []
user_assessments_llm_proposal = []
for img in selected_images:
selected_urls.append(img["image_url"])
selected_alt_text_original.append(img["original_alt_text"])
user_assessments.append(img["assessment"])
user_new_alt_texts.append(img["new_alt_text"])
selected_image_id.append(
int(img["image_index"]) + 1
) # add the id selected (+1 for index alignment)
user_assessments_llm_proposal.append(3) # default value for now
json_in_str["images_urls"] = selected_urls
json_in_str["images_alt_text_original"] = selected_alt_text_original
json_out_str["user_assessments"] = user_assessments
json_out_str["user_new_alt_texts"] = user_new_alt_texts
json_in_str = json.dumps(json_in_str, ensure_ascii=False)
json_out_str = json.dumps(json_out_str, ensure_ascii=False)
json_user_str = json.dumps({"username": user_state["username"]}, ensure_ascii=False)
connection_db = sqlite3.connect(db_path)
# ---------
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
"context_levels": 5,
"pixel_distance_threshold": 200,
"save_images": "True",
"save_elaboration": "True",
"specific_images_urls": selected_urls,
},
url=wcag_rest_server_url + "/wcag_alttext_validation",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_dataframe = load_llm_assessment_from_json(response)
# add the UI ids and other fields to to api response
info_dataframe.insert(
0, "Image #", selected_image_id
) # add the UI ids from to api response
info_dataframe.insert(2, "User Assessment", user_assessments)
info_dataframe.insert(3, "User Proposed Alt Text", user_new_alt_texts)
info_dataframe["User Assessment for LLM Proposal"] = (
user_assessments_llm_proposal
)
except Exception as e:
return {"error": str(e)}
try:
# insert after everything to keep datetime aligned
db_persistence_insert(
connection_db=connection_db,
insert_type="wcag_user_alttext_assessments",
page_url=url,
user=json_user_str,
llm_model="",
json_in_str=json_in_str,
json_out_str=json_out_str,
table="wcag_user_assessments",
)
except Exception as e:
print("Error inserting user assessment into database:", str(e))
finally:
if connection_db:
connection_db.close()
return "LLM assessment completed", info_dataframe
def make_image_extraction_api_call(
url,
number_of_images=30,
wcag_rest_server_url="http://localhost:8000",
):
print(
f"Making API call for image_extraction for {url} to {wcag_rest_server_url}/extract_images"
)
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
},
url=wcag_rest_server_url + "/extract_images",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_text, gallery_images = load_images_from_json(response)
return info_text, gallery_images
except Exception as e:
return {"error": str(e)}
# ------- Gradio Interface -------#
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Glass(), title="WCAG AI Validator") as demo:
env_path = find_dotenv(filename=".env")
if env_path == "":
print("env path not found: service starting with the default params values")
_ = load_dotenv(env_path) # read .env file
db_path = return_from_env_valid("DB_PATH", "persistence/wcag_validator_ui.db")
print("db_path:", db_path)
wcag_rest_server_url = return_from_env_valid(
"WCAG_REST_SERVER_URL", "http://localhost:8000"
)
default_urls = [
"https://amazon.com",
"https://ebay.com",
]
url_list_str = return_from_env_valid("URL_LIST", json.dumps(default_urls))
url_list = json.loads(url_list_str)
print("wcag_rest_server_url:", wcag_rest_server_url)
connection_db = db_persistence_startup(
db_name_and_path=db_path, table="wcag_user_assessments"
)
print("Database connection reference available:", connection_db)
connection_db.close()
gr.Markdown("# WCAG AI Validator UI")
# login section
user_state = gr.State({"logged_in": False, "username": None})
with gr.Accordion(label="Register & Login", open=True) as register_and_login:
with gr.Column(visible=True) as login_section:
gr.Markdown("## Login / Register")
with gr.Tab("Login"):
login_username = gr.Textbox(
label="Username", placeholder="Enter your username"
)
login_password = gr.Textbox(
label="Password", type="password", placeholder="Enter your password"
)
login_btn = gr.Button("Login", variant="primary")
login_msg = gr.Textbox(label="Login Status", interactive=False)
with gr.Tab("Register"):
reg_username = gr.Textbox(
label="Username", placeholder="Choose a username"
)
reg_password = gr.Textbox(
label="Password",
type="password",
placeholder="Choose a password (min 6 characters)",
)
reg_confirm = gr.Textbox(
label="Confirm Password",
type="password",
placeholder="Confirm your password",
)
reg_btn = gr.Button("Register", variant="primary")
reg_msg = gr.Textbox(label="Registration Status", interactive=False)
with gr.Column(visible=False) as protected_section:
content_display = gr.Textbox(
label="Your account", lines=5, interactive=False
)
logout_btn = gr.Button("Logout", variant="stop")
# end login section
with gr.Tab("Alt Text Assessment", visible=False) as alttext_assessment:
db_path_state = gr.State(value=db_path) # Store path in State\
wcag_rest_server_url_state = gr.State(value=wcag_rest_server_url)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
url_input = gr.Dropdown(
url_list,
value=url_list[0],
multiselect=False,
label="Select an URL",
info="Select an URL to load in iframe",
)
images_number = gr.Slider(
5,
100,
value=50,
step=5,
label="Max number of images to retrieve",
visible=False,
)
with gr.Column():
image_extraction_api_call_btn = gr.Button(
"Extract Images & Alt Texts", variant="primary"
)
alttext_api_call_btn = gr.Button(
"Start LLM Assessment",
variant="secondary",
interactive=False,
)
image_info_output = gr.Textbox(
label="Activity tracking", lines=1
)
with gr.Row(visible=False) as alttext_results_row:
# Use DataFrame for tabular output
alttext_info_output = gr.DataFrame(
headers=[
"Image #",
"Original Alt Text",
"User Assessment",
"User Proposed Alt Text",
"LLM Assessment",
"LLM Proposed Alt Text",
"User Assessment for LLM Proposal",
],
label="LLM Assessment Results",
wrap=True, # Wrap text in cells
interactive=True,
scale=7,
)
with gr.Column():
save_user_assessment_btn = gr.Button(
"Save Your Assessment",
variant="secondary",
interactive=True,
scale=1,
)
gr.Markdown(
" Info: to assess the LLM output, only the values for the 'User Assessment for LLM Proposal' column need to be changed."
)
with gr.Row():
gallery_html = gr.HTML(label="Image Gallery")
image_extraction_api_call_btn.click(
fn=lambda: ("", "", gr.update(visible=False), gr.Button(interactive=False)),
inputs=[],
outputs=[
image_info_output,
gallery_html,
alttext_results_row,
alttext_api_call_btn,
],
).then(
make_image_extraction_api_call,
inputs=[url_input, images_number, wcag_rest_server_url_state],
outputs=[image_info_output, gallery_html],
).then(
fn=lambda: gr.Button(interactive=True),
inputs=[],
outputs=[alttext_api_call_btn],
)
# Process selected images with JavaScript
alttext_api_call_btn.click(
fn=make_alttext_llm_assessment_api_call,
inputs=[
url_input,
gallery_html,
db_path_state,
wcag_rest_server_url_state,
user_state,
],
outputs=[image_info_output, alttext_info_output],
js="""
(url_input,gallery_html) => {
const checkboxes = document.querySelectorAll('.image-checkbox:checked');
if (checkboxes.length === 0) {
alert('Please select at least one image!');
return [url_input,JSON.stringify([])];
}
if (checkboxes.length > 3) {
alert('Please select maximum 3 images!');
return [url_input,JSON.stringify([])];
}
const selectedData = [];
checkboxes.forEach(checkbox => {
const index = checkbox.dataset.index;
const imageUrl = checkbox.dataset.imgurl;
const originalAlt = document.querySelector('.original-alt[data-index="' + index + '"]').value;
const assessment = document.querySelector('input[name="assessment-' + index + '"]:checked').value;
console.log("assessment:",assessment)
const newAltText = document.querySelector('.new-alt-text[data-index="' + index + '"]').value;
selectedData.push({
image_index: index,
image_url: imageUrl,
original_alt_text: originalAlt,
assessment: parseInt(assessment),
new_alt_text: newAltText
});
});
return [url_input,JSON.stringify(selectedData)];
}
""",
).then(
fn=lambda: gr.update(visible=True),
inputs=[],
outputs=[alttext_results_row],
)
save_user_assessment_btn.click(
fn=process_dataframe,
inputs=[db_path_state, url_input, alttext_info_output, user_state],
outputs=[image_info_output],
)
# placed here at the end to give full contents visibility to events
# Event handlers
login_btn.click(
fn=login_user,
inputs=[login_username, login_password, user_state],
outputs=[
login_msg,
reg_msg,
user_state,
login_section,
protected_section,
alttext_assessment,
register_and_login,
],
).then(fn=protected_content, inputs=[user_state], outputs=[content_display])
reg_btn.click(
fn=register_user,
inputs=[reg_username, reg_password, reg_confirm],
outputs=[login_msg, reg_msg, user_state],
)
logout_btn.click(
fn=logout_user,
inputs=[user_state],
outputs=[
login_msg,
user_state,
login_section,
protected_section,
alttext_assessment,
],
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)