#### To launch the script
# gradio wcag_validator_ui.py
# python wcag_validator_ui.py
import gradio as gr
import requests
from pathlib import Path
import sys
import pandas as pd
parent_dir = Path(__file__).parent.parent
sys.path.insert(0, str(parent_dir))
from dotenv import load_dotenv, find_dotenv
from dependences.utils import (
call_API_urlibrequest,
create_folder,
db_persistence_startup,
db_persistence_insert,
return_from_env_valid,
)
from dependences_ui.utils import *
import logging
import time
import json
import urllib.request
import urllib.parse
import os
import sqlite3
WCAG_VALIDATOR_RESTSERVER_HEADERS = [("Content-Type", "application/json")]
def process_dataframe(db_path, url, updated_df, user_state={}):
print("Processing dataframe to adjust columns...")
column_rating_name = "User Assessment for LLM Proposal"
# Get the assessment column
try:
updated_df[column_rating_name] = updated_df[column_rating_name].astype(int)
except ValueError:
return "Error: User Assessment for LLM Proposal must be an integer"
if (updated_df[column_rating_name] < 1).any() or (
updated_df[column_rating_name] > 5
).any():
return "Error: User Assessment for LLM Proposal must be between 1 and 5"
dataframe_json = updated_df.to_json(orient="records")
connection_db = sqlite3.connect(db_path)
json_user_str = json.dumps({"username": user_state["username"]}, ensure_ascii=False)
try:
# insert after everything to keep datetime aligned
db_persistence_insert(
connection_db=connection_db,
insert_type="wcag_user_llm_alttext_assessments",
page_url=url,
user=json_user_str,
llm_model="",
json_in_str=dataframe_json, # to improve
json_out_str="done via UI",
table="wcag_user_assessments",
)
except Exception as e:
print("Error inserting user assessment into database:", str(e))
finally:
if connection_db:
connection_db.close()
return "User assessment saved successfully!"
def load_images_from_json(json_input):
"""Extract URLs and alt text from JSON and create HTML gallery"""
try:
data = json_input
if "images" not in data or not data["images"]:
return "No images found in JSON", ""
images = data["images"]
info_text = f"Found {len(images)} image(s)"
print(f"Found {len(data['images'])} image(s)")
# Create HTML gallery with checkboxes and assessment forms
html = """
"""
for idx, img_data in enumerate(images):
url = img_data.get("url", "")
alt_text = img_data.get("alt_text", "No description")
html += f"""
"""
# info_text += f"✓ Image {idx+1} alt_text: {alt_text}\n"
html += "
"
return info_text, html
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", ""
except Exception as e:
return f"Error: {str(e)}", ""
def load_llm_assessment_from_json(json_input):
try:
# Parse JSON input
data = json_input
if "mllm_validations" not in data or not data["mllm_validations"]:
print("no mllm_validations found")
return pd.DataFrame()
info_text = f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)\n\n"
print(
f"Assessment done on {len(data['mllm_validations']['mllm_alttext_assessments'])} image(s)"
)
data_frame = []
for idx, img_data in enumerate(
data["mllm_validations"]["mllm_alttext_assessments"], 1
):
original_alt_text_assessment = img_data["mllm_response"].get(
"original_alt_text_assessment", "No description"
)
new_alt_text = img_data["mllm_response"].get(
"new_alt_text", "No description"
)
alt_text_original = img_data.get("alt_text", "No alt_text provided")
data_frame.append(
{
"Original Alt Text": alt_text_original,
"LLM Assessment": original_alt_text_assessment,
"LLM Proposed Alt Text": new_alt_text,
}
)
df = pd.DataFrame(data_frame)
return df
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}", []
except Exception as e:
return f"Error: {str(e)}", []
def make_alttext_llm_assessment_api_call(
url,
selected_images_json=[],
db_path=None,
wcag_rest_server_url="http://localhost:8000",
user_state={},
number_of_images=30,
):
print(
f"Making API call for llm assessment for {url} to {wcag_rest_server_url}/wcag_alttext_validation"
)
selected_images = json.loads(selected_images_json) if selected_images_json else []
# print("selected_images:", selected_images)
if not selected_images or len(selected_images) == 0:
info_text = "No images selected"
print(info_text)
return "LLM assessment not started", pd.DataFrame()
# prepare data for insertion
json_in_str = {}
json_out_str = {}
selected_urls = []
selected_alt_text_original = []
user_assessments = []
user_new_alt_texts = []
selected_image_id = []
user_assessments_llm_proposal = []
for img in selected_images:
selected_urls.append(img["image_url"])
selected_alt_text_original.append(img["original_alt_text"])
user_assessments.append(img["assessment"])
user_new_alt_texts.append(img["new_alt_text"])
selected_image_id.append(
int(img["image_index"]) + 1
) # add the id selected (+1 for index alignment)
user_assessments_llm_proposal.append(3) # default value for now
json_in_str["images_urls"] = selected_urls
json_in_str["images_alt_text_original"] = selected_alt_text_original
json_out_str["user_assessments"] = user_assessments
json_out_str["user_new_alt_texts"] = user_new_alt_texts
json_in_str = json.dumps(json_in_str, ensure_ascii=False)
json_out_str = json.dumps(json_out_str, ensure_ascii=False)
json_user_str = json.dumps({"username": user_state["username"]}, ensure_ascii=False)
connection_db = sqlite3.connect(db_path)
# ---------
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
"context_levels": 5,
"pixel_distance_threshold": 200,
"save_images": "True",
"save_elaboration": "True",
"specific_images_urls": selected_urls,
},
url=wcag_rest_server_url + "/wcag_alttext_validation",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_dataframe = load_llm_assessment_from_json(response)
# add the UI ids and other fields to to api response
info_dataframe.insert(
0, "Image #", selected_image_id
) # add the UI ids from to api response
info_dataframe.insert(2, "User Assessment", user_assessments)
info_dataframe.insert(3, "User Proposed Alt Text", user_new_alt_texts)
info_dataframe["User Assessment for LLM Proposal"] = (
user_assessments_llm_proposal
)
except Exception as e:
return {"error": str(e)}
try:
# insert after everything to keep datetime aligned
db_persistence_insert(
connection_db=connection_db,
insert_type="wcag_user_alttext_assessments",
page_url=url,
user=json_user_str,
llm_model="",
json_in_str=json_in_str,
json_out_str=json_out_str,
table="wcag_user_assessments",
)
except Exception as e:
print("Error inserting user assessment into database:", str(e))
finally:
if connection_db:
connection_db.close()
return "LLM assessment completed", info_dataframe
def make_image_extraction_api_call(
url,
number_of_images=30,
wcag_rest_server_url="http://localhost:8000",
):
print(
f"Making API call for image_extraction for {url} to {wcag_rest_server_url}/extract_images"
)
try:
response = call_API_urlibrequest(
data={
"page_url": url,
"number_of_images": number_of_images,
},
url=wcag_rest_server_url + "/extract_images",
headers=WCAG_VALIDATOR_RESTSERVER_HEADERS,
)
# return response
info_text, gallery_images = load_images_from_json(response)
return info_text, gallery_images
except Exception as e:
return {"error": str(e)}
# ------- Gradio Interface -------#
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Glass(), title="WCAG AI Validator") as demo:
env_path = find_dotenv(filename=".env")
if env_path == "":
print("env path not found: service starting with the default params values")
_ = load_dotenv(env_path) # read .env file
db_path = return_from_env_valid("DB_PATH", "persistence/wcag_validator_ui.db")
print("db_path:", db_path)
wcag_rest_server_url = return_from_env_valid(
"WCAG_REST_SERVER_URL", "http://localhost:8000"
)
default_urls = [
"https://amazon.com",
"https://ebay.com",
]
url_list_str = return_from_env_valid("URL_LIST", json.dumps(default_urls))
url_list = json.loads(url_list_str)
print("wcag_rest_server_url:", wcag_rest_server_url)
connection_db = db_persistence_startup(
db_name_and_path=db_path, table="wcag_user_assessments"
)
print("Database connection reference available:", connection_db)
connection_db.close()
gr.Markdown("# WCAG AI Validator UI")
# login section
user_state = gr.State({"logged_in": False, "username": None})
with gr.Accordion(label="Register & Login", open=True) as register_and_login:
with gr.Column(visible=True) as login_section:
gr.Markdown("## Login / Register")
with gr.Tab("Login"):
login_username = gr.Textbox(
label="Username", placeholder="Enter your username"
)
login_password = gr.Textbox(
label="Password", type="password", placeholder="Enter your password"
)
login_btn = gr.Button("Login", variant="primary")
login_msg = gr.Textbox(label="Login Status", interactive=False)
with gr.Tab("Register"):
reg_username = gr.Textbox(
label="Username", placeholder="Choose a username"
)
reg_password = gr.Textbox(
label="Password",
type="password",
placeholder="Choose a password (min 6 characters)",
)
reg_confirm = gr.Textbox(
label="Confirm Password",
type="password",
placeholder="Confirm your password",
)
reg_btn = gr.Button("Register", variant="primary")
reg_msg = gr.Textbox(label="Registration Status", interactive=False)
with gr.Column(visible=False) as protected_section:
content_display = gr.Textbox(
label="Your account", lines=5, interactive=False
)
logout_btn = gr.Button("Logout", variant="stop")
# end login section
with gr.Tab("Alt Text Assessment", visible=False) as alttext_assessment:
db_path_state = gr.State(value=db_path) # Store path in State\
wcag_rest_server_url_state = gr.State(value=wcag_rest_server_url)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
url_input = gr.Dropdown(
url_list,
value=url_list[0],
multiselect=False,
label="Select an URL",
info="Select an URL to load in iframe",
)
images_number = gr.Slider(
5,
100,
value=50,
step=5,
label="Max number of images to retrieve",
visible=False,
)
with gr.Column():
image_extraction_api_call_btn = gr.Button(
"Extract Images & Alt Texts", variant="primary"
)
alttext_api_call_btn = gr.Button(
"Start LLM Assessment",
variant="secondary",
interactive=False,
)
image_info_output = gr.Textbox(
label="Activity tracking", lines=1
)
with gr.Row(visible=False) as alttext_results_row:
# Use DataFrame for tabular output
alttext_info_output = gr.DataFrame(
headers=[
"Image #",
"Original Alt Text",
"User Assessment",
"User Proposed Alt Text",
"LLM Assessment",
"LLM Proposed Alt Text",
"User Assessment for LLM Proposal",
],
label="LLM Assessment Results",
wrap=True, # Wrap text in cells
interactive=True,
scale=7,
)
with gr.Column():
save_user_assessment_btn = gr.Button(
"Save Your Assessment",
variant="secondary",
interactive=True,
scale=1,
)
gr.Markdown(
"ℹ Info: to assess the LLM output, only the values for the 'User Assessment for LLM Proposal' column need to be changed."
)
with gr.Row():
gallery_html = gr.HTML(label="Image Gallery")
image_extraction_api_call_btn.click(
fn=lambda: ("", "", gr.update(visible=False), gr.Button(interactive=False)),
inputs=[],
outputs=[
image_info_output,
gallery_html,
alttext_results_row,
alttext_api_call_btn,
],
).then(
make_image_extraction_api_call,
inputs=[url_input, images_number, wcag_rest_server_url_state],
outputs=[image_info_output, gallery_html],
).then(
fn=lambda: gr.Button(interactive=True),
inputs=[],
outputs=[alttext_api_call_btn],
)
# Process selected images with JavaScript
alttext_api_call_btn.click(
fn=make_alttext_llm_assessment_api_call,
inputs=[
url_input,
gallery_html,
db_path_state,
wcag_rest_server_url_state,
user_state,
],
outputs=[image_info_output, alttext_info_output],
js="""
(url_input,gallery_html) => {
const checkboxes = document.querySelectorAll('.image-checkbox:checked');
if (checkboxes.length === 0) {
alert('Please select at least one image!');
return [url_input,JSON.stringify([])];
}
if (checkboxes.length > 3) {
alert('Please select maximum 3 images!');
return [url_input,JSON.stringify([])];
}
const selectedData = [];
checkboxes.forEach(checkbox => {
const index = checkbox.dataset.index;
const imageUrl = checkbox.dataset.imgurl;
const originalAlt = document.querySelector('.original-alt[data-index="' + index + '"]').value;
const assessment = document.querySelector('input[name="assessment-' + index + '"]:checked').value;
console.log("assessment:",assessment)
const newAltText = document.querySelector('.new-alt-text[data-index="' + index + '"]').value;
selectedData.push({
image_index: index,
image_url: imageUrl,
original_alt_text: originalAlt,
assessment: parseInt(assessment),
new_alt_text: newAltText
});
});
return [url_input,JSON.stringify(selectedData)];
}
""",
).then(
fn=lambda: gr.update(visible=True),
inputs=[],
outputs=[alttext_results_row],
)
save_user_assessment_btn.click(
fn=process_dataframe,
inputs=[db_path_state, url_input, alttext_info_output, user_state],
outputs=[image_info_output],
)
# placed here at the end to give full contents visibility to events
# Event handlers
login_btn.click(
fn=login_user,
inputs=[login_username, login_password, user_state],
outputs=[
login_msg,
reg_msg,
user_state,
login_section,
protected_section,
alttext_assessment,
register_and_login,
],
).then(fn=protected_content, inputs=[user_state], outputs=[content_display])
reg_btn.click(
fn=register_user,
inputs=[reg_username, reg_password, reg_confirm],
outputs=[login_msg, reg_msg, user_state],
)
logout_btn.click(
fn=logout_user,
inputs=[user_state],
outputs=[
login_msg,
user_state,
login_section,
protected_section,
alttext_assessment,
],
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)