kernel_authorship/src/model/classifiers.py

361 lines
16 KiB
Python

import numpy as np
import torch
import torch.nn as nn
from sklearn.metrics import accuracy_score, f1_score
from tqdm import tqdm
import math
from sklearn.model_selection import train_test_split
from model.early_stop import EarlyStop
class AuthorshipAttributionClassifier(nn.Module):
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
super(AuthorshipAttributionClassifier, self).__init__()
self.projector = projector.to(device)
self.ff = FFProjection(input_size=projector.space_dimensions(),
hidden_sizes=[1024],
output_size=num_authors).to(device)
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False, device=device)
self.device = device
def fit(self, X, y, batch_size, epochs, patience=10, lr=0.001, val_prop=0.1, alpha=1., log='../log/tmp.csv', checkpointpath='../checkpoint/model.dat'):
assert 0 <= alpha <= 1, 'wrong range, alpha must be in [0,1]'
early_stop = EarlyStop(patience)
batcher = Batch(batch_size=batch_size, n_epochs=epochs)
#batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=X.shape[0]//batch_size)
batcher_val = Batch(batch_size=batch_size, n_epochs=epochs, shuffle=False)
criterion = torch.nn.CrossEntropyLoss().to(self.device)
optim = torch.optim.Adam(self.parameters(), lr=lr)
X, Xval, y, yval = train_test_split(X, y, test_size=val_prop, stratify=y)
with open(log, 'wt') as foo:
foo.write('epoch\ttr-loss\tval-loss\tval-acc\tval-Mf1\tval-mf1\n')
tr_loss, val_loss = -1, -1
pbar = tqdm(range(1, batcher.n_epochs+1))
for epoch in pbar:
# training
self.train()
losses, attr_losses, sav_losses = [], [], []
for xi, yi in batcher.epoch(X, y):
optim.zero_grad()
xi = self.padder.transform(xi)
phi = self.projector(xi)
loss_attr = loss_sav = 0
loss_attr_value = loss_sav_value = -1
if alpha > 0:
logits = self.ff(phi)
loss_attr = criterion(logits, torch.as_tensor(yi).to(self.device))
loss_attr_value = loss_attr.item()
if alpha < 1:
kernel = torch.matmul(phi, phi.T)
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
loss_sav = KernelAlignmentLoss(kernel, ideal_kernel)
loss_sav_value = loss_sav.item()
loss = loss_attr*alpha + loss_sav*(1.-alpha)
loss.backward()
optim.step()
attr_losses.append(loss_attr_value)
sav_losses.append(loss_sav_value)
losses.append(loss.item())
tr_loss = np.mean(losses)
pbar.set_description(f'training epoch={epoch} '
f'loss={tr_loss:.5f} '
f'attr-loss={np.mean(attr_losses):.5f} '
f'sav-loss={np.mean(sav_losses):.5f} '
f'val_loss={val_loss:.5f}'
)
# validation
self.eval()
predictions, losses = [], []
for xi, yi in batcher_val.epoch(Xval, yval):
xi = self.padder.transform(xi)
logits = self.forward(xi)
loss = criterion(logits, torch.as_tensor(yi).to(self.device))
losses.append(loss.item())
logits = nn.functional.log_softmax(logits, dim=1)
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1))
predictions.append(prediction)
val_loss = np.mean(losses)
predictions = np.concatenate(predictions)
acc = accuracy_score(yval, predictions)
macrof1 = f1_score(yval, predictions, average='macro')
microf1 = f1_score(yval, predictions, average='micro')
foo.write(f'{epoch}\t{tr_loss:.8f}\t{val_loss:.8f}\t{acc:.3f}\t{macrof1:.3f}\t{microf1:.3f}\n')
foo.flush()
early_stop(microf1, epoch)
if early_stop.IMPROVED:
torch.save(self.state_dict(), checkpointpath)
elif early_stop.STOP:
break
print(f'training ended; loading best model parameters in {checkpointpath} for epoch {early_stop.best_epoch}')
self.load_state_dict(torch.load(checkpointpath))
def predict(self, x, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi in tqdm(batcher.epoch(x), desc='test'):
xi = self.padder.transform(xi)
logits = self.forward(xi)
logits = nn.functional.log_softmax(logits, dim=1)
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1))
predictions.append(prediction)
return np.concatenate(predictions)
def forward(self, x):
phi = self.projector(x)
return self.ff(phi)
class SameAuthorClassifier(nn.Module):
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
super(SameAuthorClassifier, self).__init__()
self.projector = projector.to(device)
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False, device=device)
self.device = device
def fit(self, X, y, batch_size, epochs, lr=0.001, steps_per_epoch=100):
self.train()
batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=steps_per_epoch)
optim = torch.optim.Adam(self.parameters(), lr=lr)
pbar = tqdm(range(batcher.n_epochs))
for epoch in pbar:
losses = []
for xi, yi in batcher.epoch(X, y):
optim.zero_grad()
xi = self.padder.transform(xi)
phi = self.projector(xi)
#normalize phi to have norm 1? maybe better as the last step of projector
kernel = torch.matmul(phi, phi.T)
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
loss = KernelAlignmentLoss(kernel, ideal_kernel)
loss.backward()
#clip_gradient(model)
optim.step()
losses.append(loss.item())
pbar.set_description(f'training epoch={epoch} loss={np.mean(losses):.5f}')
def predict(self, x, z, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi, zi in tqdm(batcher.epoch(x, z), desc='test'):
xi = self.padder.transform(xi)
zi = self.padder.transform(zi)
inners = self.forward(xi, zi)
prediction = tensor2numpy(inners) > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
predictions.append(prediction)
return np.concatenate(predictions)
def forward(self, x, z):
assert x.shape == z.shape, 'shape mismatch between matrices x and z'
phi_x = self.projector(x)
phi_z = self.projector(z)
rows, cols = phi_x.shape
pairwise_inners = torch.bmm(phi_x.view(rows, 1, cols), phi_z.view(rows, cols, 1)).squeeze()
return pairwise_inners
class FullAuthorClassifier(nn.Module):
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
super(FullAuthorClassifier, self).__init__()
self.projector = projector.to(device)
self.ff = FFProjection(input_size=projector.space_dimensions(),
hidden_sizes=[1024],
output_size=num_authors).to(device)
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False, device=device)
self.device = device
def fit(self, X, y, batch_size, epochs, lr=0.001, steps_per_epoch=100):
self.train()
batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=steps_per_epoch)
criterion = torch.nn.CrossEntropyLoss().to(self.device)
optim = torch.optim.Adam(self.parameters(), lr=lr)
alpha = 0.5
pbar = tqdm(range(batcher.n_epochs))
for epoch in pbar:
losses, sav_losses, attr_losses = [], [], []
for xi, yi in batcher.epoch(X, y):
optim.zero_grad()
xi = self.padder.transform(xi)
phi = self.projector(xi)
#normalize phi to have norm 1? maybe better as the last step of projector
#sav-loss
kernel = torch.matmul(phi, phi.T)
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
sav_loss = KernelAlignmentLoss(kernel, ideal_kernel)
sav_losses.append(sav_loss.item())
#attr-loss
logits = self.ff(phi)
attr_loss = criterion(logits, torch.as_tensor(yi).to(self.device))
attr_losses.append(attr_loss.item())
#loss
loss = (alpha)*sav_loss + (1-alpha)*attr_loss
losses.append(loss.item())
loss.backward()
#clip_gradient(model)
optim.step()
pbar.set_description(
f'training epoch={epoch} '
f'sav-loss={np.mean(sav_losses):.5f} '
f'attr-loss={np.mean(attr_losses):.5f} '
f'loss={np.mean(losses):.5f}'
)
def predict_sav(self, x, z, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi, zi in tqdm(batcher.epoch(x, z), desc='test'):
xi = self.padder.transform(xi)
zi = self.padder.transform(zi)
phi_xi = self.projector(xi)
phi_zi = self.projector(zi)
rows, cols = phi_xi.shape
pairwise_inners = torch.bmm(phi_xi.view(rows, 1, cols), phi_zi.view(rows, cols, 1)).squeeze()
prediction = tensor2numpy(pairwise_inners) > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
predictions.append(prediction)
return np.concatenate(predictions)
def predict_labels(self, x, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi in tqdm(batcher.epoch(x), desc='test'):
xi = self.padder.transform(xi)
phi = self.projector(xi)
logits = self.ff(phi)
prediction = tensor2numpy( torch.argmax(logits, dim=1).view(-1))
predictions.append(prediction)
return np.concatenate(predictions)
def KernelAlignmentLoss(K, Y):
n_el = K.shape[0]*K.shape[1]
loss = torch.norm(K - Y, p='fro') # in Nello's paper this is different
loss = loss / n_el # this is in order to factor out the accumulation which is only due to the size
return loss
class FFProjection(nn.Module):
def __init__(self, input_size, hidden_sizes, output_size, activation=nn.functional.relu, dropout=0.5):
super(FFProjection, self).__init__()
sizes = [input_size] + hidden_sizes + [output_size]
self.ff = nn.ModuleList([
nn.Linear(sizes[i], sizes[i+1]) for i in range(len(sizes)-1)
])
self.activation = activation
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
for linear in self.ff[:-1]:
x = self.dropout(self.activation(linear(x)))
x = self.ff[-1](x)
return x
class Batch:
def __init__(self, batch_size, n_epochs=1, shuffle=True):
self.batch_size = batch_size
self.n_epochs = n_epochs
self.shuffle = shuffle
self.current_epoch = 0
def epoch(self, *args):
lengths = list(map(len, args))
assert max(lengths) == min(lengths), 'inconsistent sizes in args'
n_batches = math.ceil(lengths[0] / self.batch_size)
offset = 0
if self.shuffle:
index = np.random.permutation(len(args[0]))
args = [arg[index] for arg in args]
for b in range(n_batches):
batch_idx = slice(offset, offset+self.batch_size)
batch = [arg[batch_idx] for arg in args]
yield batch if len(batch) > 1 else batch[0]
offset += self.batch_size
self.current_epoch += 1
class TwoClassBatch:
"""
given a X and y (multi-label) produces batches of elements of X, y for two classes (e.g., c1, c2)
of equal size, i.e., the batch is [(x1,c1), ..., (xn,c1), (xn+1,c2), ..., (x2n,c2)]
"""
def __init__(self, batch_size, n_epochs, steps_per_epoch):
self.batch_size = batch_size
self.n_epochs = n_epochs
self.steps_per_epoch = steps_per_epoch
self.current_epoch = 0
if self.batch_size % 2 != 0:
raise ValueError('warning, batch size is not even')
def epoch(self, X, y):
n_el = len(y)
assert X.shape[0] == n_el, 'inconsistent sizes in X, y'
classes = np.unique(y)
groups = {ci: X[y==ci] for ci in classes}
class_prevalences = [len(groups[ci])/n_el for ci in classes]
n_choices = self.batch_size // 2
for b in range(self.steps_per_epoch):
class1, class2 = np.random.choice(classes, p=class_prevalences, size=2, replace=False)
X1 = np.random.choice(groups[class1], size=n_choices)
X2 = np.random.choice(groups[class2], size=n_choices)
X_batch = np.concatenate([X1,X2])
y_batch = np.repeat([class1, class2], repeats=[n_choices,n_choices])
yield X_batch, y_batch
self.current_epoch += 1
class Padding:
def __init__(self, pad_index, max_length, dynamic=True, pad_at_end=True, device='cpu'):
"""
:param pad_index: the index representing the PAD token
:param max_length: the length that defines the padding
:param dynamic: if True (default) pads at min(max_length, max_local_length) where max_local_length is the
length of the longest example
:param pad_at_end: if True, the pad tokens are added at the end of the lists, if otherwise they are added
at the beginning
"""
self.pad = pad_index
self.max_length = max_length
self.dynamic = dynamic
self.pad_at_end = pad_at_end
self.device = device
def transform(self, X):
"""
:param X: a list of lists of indexes (integers)
:return: a ndarray of shape (n,m) where n is the number of elements in X and m is the pad length (the maximum
in elements of X if dynamic, or self.max_length if otherwise)
"""
X = [x[:self.max_length] for x in X]
lengths = list(map(len, X))
pad_length = min(max(lengths), self.max_length) if self.dynamic else self.max_length
if self.pad_at_end:
padded = [x + [self.pad] * (pad_length - x_len) for x, x_len in zip(X, lengths)]
else:
padded = [[self.pad] * (pad_length - x_len) + x for x, x_len in zip(X, lengths)]
return torch.from_numpy(np.asarray(padded, dtype=int)).to(self.device)
def tensor2numpy(t):
return t.to('cpu').detach().numpy()