first commit

This commit is contained in:
Alejandro Moreo Fernandez 2020-04-28 11:18:52 +02:00
commit fe5bcfe61b
6 changed files with 621 additions and 0 deletions

View File

@ -0,0 +1,141 @@
from abc import ABC, abstractmethod
import random
import numpy as np
from collections import Counter
class LabelledCorpus:
def __init__(self, documents, labels):
if not isinstance(documents, np.ndarray): documents = np.asarray(documents)
if not isinstance(labels, np.ndarray): labels = np.asarray(labels)
self.data = documents
self.target = labels
def __len__(self):
return len(self.data)
@classmethod
def filter(cls, labelled_corpus, to_drop):
sel_data, sel_target = [], []
for i in range(len(labelled_corpus)):
if labelled_corpus.target[i] not in to_drop:
sel_data.append(labelled_corpus.data[i])
sel_target.append(labelled_corpus.target[i])
return LabelledCorpus(sel_data, sel_target)
class AuthorshipDataset(ABC):
def __init__(self, data_path, n_authors=-1, docs_by_author=-1, n_open_set_authors = 0, random_state=42):
self.data_path = data_path
random.seed(random_state)
np.random.seed(random_state)
self._check_n_authors(n_authors, n_open_set_authors)
self.train, self.test, self.target_names = self._fetch_and_split()
self._assure_docs_by_author(docs_by_author)
self._reduce_authors_documents(n_authors, docs_by_author, n_open_set_authors)
self._remove_label_gaps()
super().__init__()
@abstractmethod
def _fetch_and_split(self):
pass
@abstractmethod
def _check_n_authors(self, n_authors, n_open_set_authors):
pass
def _reduce_authors_documents(self, n_authors, n_docs_by_author, n_open_set_authors):
if n_authors != -1 or n_docs_by_author != -1:
#training data only (test contains all examples by author)
if n_docs_by_author != -1:
docs_by_author = self.group_by(self.train.data, self.train.target)
train_labels, train_data = [], []
for author, documents in docs_by_author.items():
if n_docs_by_author > len(documents):
continue
selected_docs = random.sample(documents, n_docs_by_author)
train_labels.extend([author] * n_docs_by_author)
train_data.extend(selected_docs)
self.train = LabelledCorpus(train_data, train_labels)
if n_authors == -1:
selected_authors = self.target_names
else:
selected_authors = random.sample(self.target_names, n_authors+n_open_set_authors)
self.test = self.extract_documents_from_authors(self.test, selected_authors)
self.train = self.extract_documents_from_authors(self.train, selected_authors)
else:
selected_authors = np.unique(self.train.target)
if n_open_set_authors > 0:
self.train, self.test, self.test_out = self.disjoint_train_test_authors(
self.train, self.test, n_open_set_authors, selected_authors
)
else:
self.test_out = None
# reindex labels so that the unique labels are equal to range(#num_different_authors)
# and unique training labels are range(#num_different_training_authors)
def _remove_label_gaps(self):
# reindex the training labels first, so that they contain no gaps
unique_labels = np.unique(self.train.target)
recode={old:new for old,new in zip(unique_labels,range(len(unique_labels)))}
self.train.target=np.array([recode[l] for l in self.train.target])
self.test.target = np.array([recode[l] for l in self.test.target])
#test_out_labels (if requested) contains additional authors
if self.test_out is not None:
for l in np.unique(self.test_out.target):
if l not in recode:
recode[l] = len(recode)
self.test_out.target = np.array([recode[l] for l in self.test_out.target])
def group_by(self, docs, authors):
return {i: docs[authors == i].tolist() for i in np.unique(authors)}
def extract_documents_from_authors(self, labelled_docs, authors):
X, y = labelled_docs.data, labelled_docs.target
if not isinstance(X, np.ndarray): X = np.asarray(X)
if not isinstance(y, np.ndarray): y = np.asarray(y)
idx = np.logical_or.reduce([y == i for i in authors])
return LabelledCorpus(X[idx], y[idx])
def disjoint_train_test_authors(self, train, test, n_open_test_authors, selected_authors):
train_authors, test_authors = selected_authors[n_open_test_authors:], selected_authors[:n_open_test_authors]
train = self.extract_documents_from_authors(train, train_authors)
test_in = self.extract_documents_from_authors(test, train_authors)
test_out = self.extract_documents_from_authors(test, test_authors)
return train, test_in, test_out
def _assure_docs_by_author(self, docs_by_author):
if docs_by_author == -1:
return
author_doc_count = Counter(self.train.target)
to_remove = frozenset([id for id,count in author_doc_count.most_common() if count<docs_by_author])
assert len(to_remove) < len(author_doc_count), 'impossible selection'
if len(to_remove)>0:
self.train = LabelledCorpus.filter(self.train, to_remove)
self.test = LabelledCorpus.filter(self.test, to_remove)
self.target_names = sorted(set(self.target_names) - to_remove)

View File

@ -0,0 +1,35 @@
import numpy as np
import csv
from sklearn.model_selection import train_test_split
from data.AuthorshipDataset import AuthorshipDataset, LabelledCorpus
class Victorian(AuthorshipDataset):
TEST_SIZE = 0.30
def __init__(self, data_path='../data/victoria', n_authors=-1, docs_by_author=-1, n_open_set_authors=0, random_state=42):
super().__init__(data_path, n_authors, docs_by_author, n_open_set_authors, random_state)
def _fetch_and_split(self):
data, labels = [], []
with open (f'{self.data_path}/Gungor_2018_VictorianAuthorAttribution_data-train.csv','r',encoding="latin-1") as file:
csv_reader = csv.reader(file, delimiter = ',')
next(csv_reader)
for row in csv_reader:
# if row[0]!='text':
data.append(row[0])
labels.append(int(row[1]))
target_names = sorted(np.unique(labels))
train_data, test_data, train_labels, test_labels = \
train_test_split(data, labels, test_size=Victorian.TEST_SIZE, stratify=labels)
return LabelledCorpus(train_data, train_labels), LabelledCorpus(test_data, test_labels), target_names
def _check_n_authors(self, n_authors, n_open_set_authors):
pass

9
src/evaluation.py Normal file
View File

@ -0,0 +1,9 @@
from sklearn.metrics import f1_score, accuracy_score
def eval(y_true, y_pred):
acc = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
print(f'acc={acc * 100:.2f}%')
print(f'macro-f1={f1:.2f}')
return acc, f1

52
src/index.py Normal file
View File

@ -0,0 +1,52 @@
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from tqdm import tqdm
class Index:
def __init__(self, **kwargs):
"""
:param kwargs: keyworded arguments from _sklearn.feature_extraction.text.CountVectorizer_
"""
self.vect = CountVectorizer(**kwargs)
self.unk = -1 # a valid index is assigned after fit
def fit(self, X):
"""
:param X: a list of strings
:return: self
"""
self.vect.fit(X)
self.analyzer = self.vect.build_analyzer()
self.vocabulary = self.vect.vocabulary_
self.unk = self.add_word('UNKTOKEN')
return self
def transform(self, X):
assert self.unk > 0, 'transform called before fit'
return np.asarray([
[self.vocabulary.get(word, self.unk) for word in self.analyzer(doc)] for doc in tqdm(X, desc='indexing')]
)
def fit_transform(self, X):
return self.fit(X).transform(X)
def vocabulary_size(self):
return len(self.vocabulary) + 1 # the reserved unk token
def add_word(self, word):
if word in self.vocabulary:
raise ValueError(f'word {word} already in dictionary')
self.vocabulary[word] = len(self.vocabulary)
return self.vocabulary[word]

81
src/main.py Normal file
View File

@ -0,0 +1,81 @@
import numpy as np
from index import Index
from model import RNNProjection, AuthorshipAttributionClassifier, Batch, SameAuthorClassifier, FullAuthorClassifier
from data.fetch_victorian import Victorian
from evaluation import eval
import torch
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
print(f'running on {device}')
dataset = Victorian(data_path='../../authorship_analysis/data/victoria', n_authors=5, docs_by_author=25)
Xtr, ytr = dataset.train.data, dataset.train.target
Xte, yte = dataset.test.data, dataset.test.target
A = np.unique(ytr)
#X = X[:100]
#y = y[:100]
#Xte = Xte[:100]
#yte = yte[:100]
#X = [
# "esto, es una primera prueba",
# "esto: es una segunda prueba un poco más larga",
# "vamos ahi con la tercera! a ver",
# "una cuarta prueba con otro trozo de texto"
#]
#y = [0,0,1,1]
index = Index(analyzer='char')
Xtr = index.fit_transform(Xtr)
Xte = index.transform(Xte)
pad_index = index.add_word('PADTOKEN')
shuffle1 = np.random.permutation(Xte.shape[0])
shuffle2 = np.random.permutation(Xte.shape[0])
x1, y1 = Xte[shuffle1], yte[shuffle1]
x2, y2 = Xte[shuffle2], yte[shuffle2]
paired_y = y1==y2
hidden_size=64
output_size=128
pad_length=1000
batch_size=50
n_epochs=10
hidden_size=16
output_size=32
pad_length=100
batch_size=10
n_epochs=2
# attribution
print('Attribution')
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size)
cls = AuthorshipAttributionClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
yte_ = cls.predict(Xte)
eval(yte, yte_)
# verification
print('Verification')
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size)
cls = SameAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
paired_y_ = cls.predict(x1,x2)
eval(paired_y, paired_y_)
# attribution & verification
print('Attribution & Verification')
phi = RNNProjection(vocab_size=index.vocabulary_size(), hidden_size=hidden_size, output_size=output_size)
cls = FullAuthorClassifier(phi, num_authors=A.size, pad_index=pad_index, pad_length=pad_length, device=device)
cls.fit(Xtr, ytr, batch_size=batch_size, epochs=n_epochs)
yte_ = cls.predict_labels(Xte)
eval(yte, yte_)
paired_y_ = cls.predict_sav(x1,x2)
eval(paired_y, paired_y_)

303
src/model.py Normal file
View File

@ -0,0 +1,303 @@
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
import math
class AuthorshipAttributionClassifier(nn.Module):
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
super(AuthorshipAttributionClassifier, self).__init__()
self.projector = projector.to(device)
self.label = nn.Linear(self.projector.space_dimensions(), num_authors).to(device)
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False)
self.device=device
def fit(self, X, y, batch_size, epochs, lr=0.001):
self.train()
batcher = Batch(batch_size=batch_size, n_epochs=epochs)
criterion = torch.nn.CrossEntropyLoss().to(self.device)
optim = torch.optim.Adam(self.parameters(), lr=lr)
pbar = tqdm(range(batcher.n_epochs))
for epoch in pbar:
losses = []
for xi, yi in batcher.epoch(X, y):
optim.zero_grad()
xi = self.padder.transform(xi)
logits = self.forward(xi)
loss = criterion(logits, torch.as_tensor(yi))
loss.backward()
#clip_gradient(model)
optim.step()
losses.append(loss.item())
pbar.set_description(f'training epoch={epoch} loss={np.mean(losses):.5f}')
def predict(self, x, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi in tqdm(batcher.epoch(x), desc='test'):
xi = self.padder.transform(xi)
logits = self.forward(xi)
prediction = torch.argmax(logits, dim=1).view(-1).detach().numpy()
predictions.append(prediction)
return np.concatenate(predictions)
def forward(self, x):
phi = self.projector(x)
return self.label(phi)
class SameAuthorClassifier(nn.Module):
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
super(SameAuthorClassifier, self).__init__()
self.projector = projector.to(device)
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False)
self.device = device
def fit(self, X, y, batch_size, epochs, lr=0.001, steps_per_epoch=100):
self.train()
batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=steps_per_epoch)
optim = torch.optim.Adam(self.parameters(), lr=lr)
pbar = tqdm(range(batcher.n_epochs))
for epoch in pbar:
losses = []
for xi, yi in batcher.epoch(X, y):
optim.zero_grad()
xi = self.padder.transform(xi)
phi = self.projector(xi)
#normalize phi to have norm 1? maybe better as the last step of projector
kernel = torch.matmul(phi, phi.T)
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1))
loss = KernelAlignmentLoss(kernel, ideal_kernel)
loss.backward()
#clip_gradient(model)
optim.step()
losses.append(loss.item())
pbar.set_description(f'training epoch={epoch} loss={np.mean(losses):.5f}')
def predict(self, x, z, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi, zi in tqdm(batcher.epoch(x, z), desc='test'):
xi = self.padder.transform(xi)
zi = self.padder.transform(zi)
inners = self.forward(xi, zi)
prediction = inners.detach().numpy() > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
predictions.append(prediction)
return np.concatenate(predictions)
def forward(self, x, z):
assert x.shape == z.shape, 'shape mismatch between matrices x and z'
phi_x = self.projector(x)
phi_z = self.projector(z)
rows, cols = phi_x.shape
pairwise_inners = torch.bmm(phi_x.view(rows, 1, cols), phi_z.view(rows, cols, 1)).squeeze()
return pairwise_inners
class FullAuthorClassifier(nn.Module):
def __init__(self, projector, num_authors, pad_index, pad_length=500, device='cpu'):
super(FullAuthorClassifier, self).__init__()
self.projector = projector.to(device)
self.label = nn.Linear(self.projector.space_dimensions(), num_authors).to(device)
self.padder = Padding(pad_index=pad_index, max_length=pad_length, dynamic=True, pad_at_end=False)
self.device = device
def fit(self, X, y, batch_size, epochs, lr=0.001, steps_per_epoch=100):
self.train()
batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=steps_per_epoch)
criterion = torch.nn.CrossEntropyLoss().to(self.device)
optim = torch.optim.Adam(self.parameters(), lr=lr)
alpha = 0.5
pbar = tqdm(range(batcher.n_epochs))
for epoch in pbar:
losses, sav_losses, attr_losses = [], [], []
for xi, yi in batcher.epoch(X, y):
optim.zero_grad()
xi = self.padder.transform(xi)
phi = self.projector(xi)
#normalize phi to have norm 1? maybe better as the last step of projector
#sav-loss
kernel = torch.matmul(phi, phi.T)
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1))
sav_loss = KernelAlignmentLoss(kernel, ideal_kernel)
sav_losses.append(sav_loss.item())
#attr-loss
logits = self.label(phi)
attr_loss = criterion(logits, torch.as_tensor(yi))
attr_losses.append(attr_loss.item())
#loss
loss = (alpha)*sav_loss + (1-alpha)*attr_loss
losses.append(loss.item())
loss.backward()
#clip_gradient(model)
optim.step()
pbar.set_description(
f'training epoch={epoch} '
f'sav-loss={np.mean(sav_losses):.5f} '
f'attr-loss={np.mean(attr_losses):.5f} '
f'loss={np.mean(losses):.5f}'
)
def predict_sav(self, x, z, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi, zi in tqdm(batcher.epoch(x, z), desc='test'):
xi = self.padder.transform(xi)
zi = self.padder.transform(zi)
phi_xi = self.projector(xi)
phi_zi = self.projector(zi)
rows, cols = phi_xi.shape
pairwise_inners = torch.bmm(phi_xi.view(rows, 1, cols), phi_zi.view(rows, cols, 1)).squeeze()
prediction = pairwise_inners.detach().numpy() > 0.5 # is this correct? should it be > 0 and the ideal kernel in field {-1,+1}?
predictions.append(prediction)
return np.concatenate(predictions)
def predict_labels(self, x, batch_size=100):
self.eval()
batcher = Batch(batch_size=batch_size, n_epochs=1, shuffle=False)
predictions = []
for xi in tqdm(batcher.epoch(x), desc='test'):
xi = self.padder.transform(xi)
phi = self.projector(xi)
logits = self.label(phi)
prediction = torch.argmax(logits, dim=1).view(-1).detach().numpy()
predictions.append(prediction)
return np.concatenate(predictions)
def KernelAlignmentLoss(K, Y):
n_el = K.shape[0]*K.shape[1]
loss = torch.norm(K - Y, p='fro') # in Nello's paper this is different
loss = loss / n_el # this is in order to factor out the accumulation which is only due to the size
return loss
class RNNProjection(nn.Module):
def __init__(self, vocab_size, hidden_size, output_size):
super(RNNProjection, self).__init__()
self.output_size = output_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_layers=1
self.num_directions=1
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.rnn = nn.GRU(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=self.num_layers,
bidirectional=(self.num_directions == 2),
batch_first=True
)
self.projection = nn.Linear(self.num_layers * self.num_directions * self.hidden_size, output_size)
def init_hidden(self, batch_size):
return torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size) #.cuda()
def forward(self, input):
x = torch.as_tensor(input)
batch_size = x.shape[0]
x = self.embedding(x)
output, hn = self.rnn(x, self.init_hidden(batch_size))
hn = hn.view(self.num_layers, self.num_directions, batch_size, self.hidden_size)
hn = hn.permute(2, 0, 1, 3).reshape(batch_size, -1)
return self.projection(hn)
def space_dimensions(self):
return self.output_size
class Batch:
def __init__(self, batch_size, n_epochs, shuffle=True):
self.batch_size = batch_size
self.n_epochs = n_epochs
self.shuffle = shuffle
self.current_epoch = 0
def epoch(self, *args):
lengths = list(map(len, args))
assert max(lengths) == min(lengths), 'inconsistent sizes in args'
n_batches = math.ceil(lengths[0] / self.batch_size)
offset = 0
if self.shuffle:
index = np.random.permutation(len(args[0]))
args = [arg[index] for arg in args]
for b in range(n_batches):
batch_idx = slice(offset, offset+self.batch_size)
batch = [arg[batch_idx] for arg in args]
yield batch if len(batch) > 1 else batch[0]
offset += self.batch_size
self.current_epoch += 1
class TwoClassBatch:
"""
given a X and y (multi-label) produces batches of elements of X, y for two classes (e.g., c1, c2)
of equal size, i.e., the batch is [(x1,c1), ..., (xn,c1), (xn+1,c2), ..., (x2n,c2)]
"""
def __init__(self, batch_size, n_epochs, steps_per_epoch):
self.batch_size = batch_size
self.n_epochs = n_epochs
self.steps_per_epoch = steps_per_epoch
self.current_epoch = 0
if self.batch_size % 2 != 0:
raise ValueError('warning, batch size is not even')
def epoch(self, X, y):
n_el = len(y)
assert X.shape[0] == n_el, 'inconsistent sizes in X, y'
classes = np.unique(y)
groups = {ci: X[y==ci] for ci in classes}
class_prevalences = [len(groups[ci])/n_el for ci in classes]
n_choices = self.batch_size // 2
for b in range(self.steps_per_epoch):
class1, class2 = np.random.choice(classes, p=class_prevalences, size=2, replace=False)
X1 = np.random.choice(groups[class1], size=n_choices)
X2 = np.random.choice(groups[class2], size=n_choices)
X_batch = np.concatenate([X1,X2])
y_batch = np.repeat([class1, class2], repeats=[n_choices,n_choices])
yield X_batch, y_batch
self.current_epoch += 1
class Padding:
def __init__(self, pad_index, max_length, dynamic=True, pad_at_end=True):
"""
:param pad_index: the index representing the PAD token
:param max_length: the length that defines the padding
:param dynamic: if True (default) pads at min(max_length, max_local_length) where max_local_length is the
length of the longest example
:param pad_at_end: if True, the pad tokens are added at the end of the lists, if otherwise they are added
at the beginning
"""
self.pad = pad_index
self.max_length = max_length
self.dynamic = dynamic
self.pad_at_end = pad_at_end
def transform(self, X):
"""
:param X: a list of lists of indexes (integers)
:return: a ndarray of shape (n,m) where n is the number of elements in X and m is the pad length (the maximum
in elements of X if dynamic, or self.max_length if otherwise)
"""
X = [x[:self.max_length] for x in X]
lengths = list(map(len, X))
pad_length = min(max(lengths), self.max_length) if self.dynamic else self.max_length
if self.pad_at_end:
padded = [x + [self.pad] * (pad_length - x_len) for x, x_len in zip(X, lengths)]
else:
padded = [[self.pad] * (pad_length - x_len) + x for x, x_len in zip(X, lengths)]
return np.asarray(padded, dtype=int)