bug in batch for validation
This commit is contained in:
parent
faa4835e1e
commit
0fbbd64b05
|
@ -13,7 +13,7 @@ import sys
|
|||
hidden_size=32
|
||||
channels_out=128
|
||||
output_size=1024
|
||||
kernel_sizes=[4,5,6]
|
||||
kernel_sizes=[6,7,8]
|
||||
pad_length=3000
|
||||
batch_size=50
|
||||
n_epochs=256
|
||||
|
@ -32,7 +32,7 @@ else:
|
|||
print(f'running on {device}')
|
||||
|
||||
#dataset = Victorian(data_path='../../authorship_analysis/data/victoria', n_authors=5, docs_by_author=25)
|
||||
dataset = Imdb62(data_path='../../authorship_analysis/data/imdb62/imdb62.txt', n_authors=5, docs_by_author=25)
|
||||
dataset = Imdb62(data_path='../../authorship_analysis/data/imdb62/imdb62.txt', n_authors=-1, docs_by_author=-1)
|
||||
Xtr, ytr = dataset.train.data, dataset.train.target
|
||||
Xte, yte = dataset.test.data, dataset.test.target
|
||||
A = np.unique(ytr)
|
||||
|
|
|
@ -19,8 +19,10 @@ class AuthorshipAttributionClassifier(nn.Module):
|
|||
|
||||
def fit(self, X, y, batch_size, epochs, lr=0.001, val_prop=0.1, log='../log/tmp.csv'):
|
||||
batcher = Batch(batch_size=batch_size, n_epochs=epochs)
|
||||
batcher_val = Batch(batch_size=batch_size, n_epochs=epochs, shuffle=False)
|
||||
criterion = torch.nn.CrossEntropyLoss().to(self.device)
|
||||
optim = torch.optim.Adam(self.parameters(), lr=lr)
|
||||
#optim = torch.optim.Adadelta(self.parameters(), lr=lr)
|
||||
|
||||
X, Xval, y, yval = train_test_split(X, y, test_size=val_prop, stratify=y)
|
||||
|
||||
|
@ -46,12 +48,12 @@ class AuthorshipAttributionClassifier(nn.Module):
|
|||
# validation
|
||||
self.eval()
|
||||
predictions, losses = [], []
|
||||
for xi, yi in batcher.epoch(Xval, yval):
|
||||
for xi, yi in batcher_val.epoch(Xval, yval):
|
||||
xi = self.padder.transform(xi)
|
||||
logits = self.forward(xi)
|
||||
loss = criterion(logits, torch.as_tensor(yi).to(self.device))
|
||||
losses.append(loss.item())
|
||||
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1))
|
||||
prediction = tensor2numpy(torch.argmax(nn.functional.log_softmax(logits), dim=1).view(-1))
|
||||
predictions.append(prediction)
|
||||
val_loss = np.mean(losses)
|
||||
predictions = np.concatenate(predictions)
|
||||
|
@ -69,7 +71,7 @@ class AuthorshipAttributionClassifier(nn.Module):
|
|||
for xi in tqdm(batcher.epoch(x), desc='test'):
|
||||
xi = self.padder.transform(xi)
|
||||
logits = self.forward(xi)
|
||||
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1))
|
||||
prediction = tensor2numpy(nn.functional.log_softmax(torch.argmax(logits, dim=1).view(-1)))
|
||||
predictions.append(prediction)
|
||||
return np.concatenate(predictions)
|
||||
|
||||
|
@ -232,7 +234,7 @@ class FFProjection(nn.Module):
|
|||
|
||||
|
||||
class Batch:
|
||||
def __init__(self, batch_size, n_epochs, shuffle=True):
|
||||
def __init__(self, batch_size, n_epochs=1, shuffle=True):
|
||||
self.batch_size = batch_size
|
||||
self.n_epochs = n_epochs
|
||||
self.shuffle = shuffle
|
||||
|
|
Loading…
Reference in New Issue