bug in batch for validation

This commit is contained in:
Alejandro Moreo Fernandez 2020-05-02 23:24:24 +02:00
parent faa4835e1e
commit 0fbbd64b05
2 changed files with 8 additions and 6 deletions

View File

@ -13,7 +13,7 @@ import sys
hidden_size=32
channels_out=128
output_size=1024
kernel_sizes=[4,5,6]
kernel_sizes=[6,7,8]
pad_length=3000
batch_size=50
n_epochs=256
@ -32,7 +32,7 @@ else:
print(f'running on {device}')
#dataset = Victorian(data_path='../../authorship_analysis/data/victoria', n_authors=5, docs_by_author=25)
dataset = Imdb62(data_path='../../authorship_analysis/data/imdb62/imdb62.txt', n_authors=5, docs_by_author=25)
dataset = Imdb62(data_path='../../authorship_analysis/data/imdb62/imdb62.txt', n_authors=-1, docs_by_author=-1)
Xtr, ytr = dataset.train.data, dataset.train.target
Xte, yte = dataset.test.data, dataset.test.target
A = np.unique(ytr)

View File

@ -19,8 +19,10 @@ class AuthorshipAttributionClassifier(nn.Module):
def fit(self, X, y, batch_size, epochs, lr=0.001, val_prop=0.1, log='../log/tmp.csv'):
batcher = Batch(batch_size=batch_size, n_epochs=epochs)
batcher_val = Batch(batch_size=batch_size, n_epochs=epochs, shuffle=False)
criterion = torch.nn.CrossEntropyLoss().to(self.device)
optim = torch.optim.Adam(self.parameters(), lr=lr)
#optim = torch.optim.Adadelta(self.parameters(), lr=lr)
X, Xval, y, yval = train_test_split(X, y, test_size=val_prop, stratify=y)
@ -46,12 +48,12 @@ class AuthorshipAttributionClassifier(nn.Module):
# validation
self.eval()
predictions, losses = [], []
for xi, yi in batcher.epoch(Xval, yval):
for xi, yi in batcher_val.epoch(Xval, yval):
xi = self.padder.transform(xi)
logits = self.forward(xi)
loss = criterion(logits, torch.as_tensor(yi).to(self.device))
losses.append(loss.item())
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1))
prediction = tensor2numpy(torch.argmax(nn.functional.log_softmax(logits), dim=1).view(-1))
predictions.append(prediction)
val_loss = np.mean(losses)
predictions = np.concatenate(predictions)
@ -69,7 +71,7 @@ class AuthorshipAttributionClassifier(nn.Module):
for xi in tqdm(batcher.epoch(x), desc='test'):
xi = self.padder.transform(xi)
logits = self.forward(xi)
prediction = tensor2numpy(torch.argmax(logits, dim=1).view(-1))
prediction = tensor2numpy(nn.functional.log_softmax(torch.argmax(logits, dim=1).view(-1)))
predictions.append(prediction)
return np.concatenate(predictions)
@ -232,7 +234,7 @@ class FFProjection(nn.Module):
class Batch:
def __init__(self, batch_size, n_epochs, shuffle=True):
def __init__(self, batch_size, n_epochs=1, shuffle=True):
self.batch_size = batch_size
self.n_epochs = n_epochs
self.shuffle = shuffle