QuaPy/KDEy/quantification_evaluation_d...

189 lines
6.6 KiB
Python

import pickle
import os
from time import time
from collections import defaultdict
from tqdm import tqdm
import numpy as np
from sklearn.linear_model import LogisticRegression
import quapy as qp
from KDEy.kdey_devel import KDEyMLauto, optim_minimize
from method._kdey import KDEBase
from quapy.method.aggregative import PACC, EMQ, KDEyML
from quapy.model_selection import GridSearchQ
from quapy.protocol import UPP
from pathlib import Path
from quapy import functional as F
import matplotlib.pyplot as plt
SEED = 1
def newLR():
return LogisticRegression(max_iter=1000)#, C=1, class_weight='balanced')
SAMPLE_SIZE=150
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE
show_ae = True
show_rae = True
show_mse = False
show_kld = True
epsilon = 1e-10
# n_bags_test = 2
# DATASETS = [qp.datasets.UCI_MULTICLASS_DATASETS[21]]
DATASETS = qp.datasets.UCI_MULTICLASS_DATASETS
for i, dataset in enumerate(DATASETS):
def generate_data():
data = qp.datasets.fetch_UCIMulticlassDataset(dataset)
n_classes = data.n_classes
print(f'{i=}')
print(f'{dataset=}')
print(f'{n_classes=}')
print(len(data.training))
print(len(data.test))
train, test = data.train_test
train_prev = train.prevalence()
test_prev = test.prevalence()
print(f'train-prev = {F.strprev(train_prev)}')
print(f'test-prev = {F.strprev(test_prev)}')
repeats = 10
prot = UPP(test, sample_size=SAMPLE_SIZE, repeats=repeats)
kde = KDEyMLauto(newLR())
kde.fit(train)
AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = [], [], [], [], []
tr_posteriors, tr_y = kde.classif_predictions.Xy
for it, (sample, prev) in tqdm(enumerate(prot()), total=repeats):
te_posteriors = kde.classifier.predict_proba(sample)
classes = train.classes_
xaxis = []
ae_error = []
rae_error = []
mse_error = []
kld_error = []
likelihood_value = []
# for bandwidth in np.linspace(0.01, 0.2, 50):
for bandwidth in np.logspace(-5, 0.5, 50):
mix_densities = kde.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
test_densities = [kde.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
def neg_loglikelihood_prev(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
pred_prev, likelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
xaxis.append(bandwidth)
ae_error.append(qp.error.ae(prev, pred_prev))
rae_error.append(qp.error.rae(prev, pred_prev))
mse_error.append(qp.error.mse(prev, pred_prev))
kld_error.append(qp.error.kld(prev, pred_prev))
likelihood_value.append(likelihood)
AE_error.append(ae_error)
RAE_error.append(rae_error)
MSE_error.append(mse_error)
KLD_error.append(kld_error)
LIKE_value.append(likelihood_value)
return xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value
xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = qp.util.pickled_resource(
f'./plots/likelihood/pickles/{dataset}.pkl', generate_data)
for row in range(len(AE_error)):
# Crear la figura
# ----------------------------------------------------------------------------------------------------
fig, ax1 = plt.subplots(figsize=(8, 6))
# Pintar las series ae_error, rae_error, y kld_error en el primer eje Y
if show_ae:
ax1.plot(xaxis, AE_error[row], label='AE', marker='o', color='b')
if show_rae:
ax1.plot(xaxis, RAE_error[row], label='RAE', marker='s', color='g')
if show_kld:
ax1.plot(xaxis, KLD_error[row], label='KLD', marker='^', color='r')
if show_mse:
ax1.plot(xaxis, MSE_error[row], label='MSE', marker='^', color='c')
ax1.set_xscale('log')
# Configurar etiquetas para el primer eje Y
ax1.set_xlabel('Bandwidth')
ax1.set_ylabel('Error Value')
ax1.grid(True)
ax1.legend(loc='upper left')
# Crear un segundo eje Y que comparte el eje X
ax2 = ax1.twinx()
# Pintar likelihood_val en el segundo eje Y
ax2.plot(xaxis, LIKE_value[row], label='(neg)Likelihood', marker='x', color='purple')
# Configurar etiquetas para el segundo eje Y
ax2.set_ylabel('Likelihood Value')
ax2.legend(loc='upper right')
# Mostrar el gráfico
plt.title('Error Metrics vs Bandwidth')
# plt.show()
os.makedirs('./plots/likelihood/', exist_ok=True)
plt.savefig(f'./plots/likelihood/{dataset}-fig{row}.png')
plt.close()
# Crear la figura con las medias
# ----------------------------------------------------------------------------------------------------
fig, ax1 = plt.subplots(figsize=(8, 6))
def add_plot(ax, vals_error, name, color, marker, show):
if not show:
return
vals_error = np.asarray(vals_error)
vals_ave = np.mean(vals_error, axis=0)
vals_std = np.std(vals_error, axis=0)
ax.plot(xaxis, vals_ave, label=name, marker=marker, color=color)
ax.fill_between(xaxis, vals_ave - vals_std, vals_ave + vals_std, color=color, alpha=0.2)
add_plot(ax1, AE_error, 'AE', color='b', marker='o', show=show_ae)
add_plot(ax1, RAE_error, 'RAE', color='g', marker='s', show=show_rae)
add_plot(ax1, KLD_error, 'KLD', color='r', marker='^', show=show_kld)
add_plot(ax1, MSE_error, 'MSE', color='c', marker='^', show=show_mse)
ax1.set_xscale('log')
# Configurar etiquetas para el primer eje Y
ax1.set_xlabel('Bandwidth')
ax1.set_ylabel('Error Value')
ax1.grid(True)
ax1.legend(loc='upper left')
# Crear un segundo eje Y que comparte el eje X
ax2 = ax1.twinx()
# Pintar likelihood_val en el segundo eje Y
add_plot(ax2, LIKE_value, '(neg)Likelihood', color='purple', marker='x', show=True)
# Configurar etiquetas para el segundo eje Y
ax2.set_ylabel('Likelihood Value')
ax2.legend(loc='upper right')
# Mostrar el gráfico
plt.title('Error Metrics vs Bandwidth')
# plt.show()
os.makedirs('./plots/likelihood/', exist_ok=True)
plt.savefig(f'./plots/likelihood/{dataset}-figAve.png')
plt.close()