170 lines
7.0 KiB
Python
170 lines
7.0 KiB
Python
import os.path
|
|
from pathlib import Path
|
|
import pandas as pd
|
|
from sklearn.linear_model import LogisticRegression
|
|
from copy import deepcopy as cp
|
|
import quapy as qp
|
|
from BayesianKDEy.commons import KDEyReduce
|
|
from _bayeisan_kdey import BayesianKDEy
|
|
from _bayesian_mapls import BayesianMAPLS
|
|
from commons import experiment_path, KDEyCLR, RESULT_DIR, MockClassifierFromPosteriors, KDEyScaledB, KDEyFresh
|
|
# import datasets
|
|
from datasets import LeQuaHandler, UCIMulticlassHandler, DatasetHandler, VisualDataHandler, CIFAR100Handler
|
|
from method.confidence import ConfidenceIntervals
|
|
from temperature_calibration import temp_calibration
|
|
from build.lib.quapy.data import LabelledCollection
|
|
from quapy.method.aggregative import DistributionMatchingY as DMy, AggregativeQuantifier, EMQ, CC
|
|
from quapy.model_selection import GridSearchQ
|
|
from quapy.data import Dataset
|
|
from quapy.method.confidence import BayesianCC, AggregativeBootstrap
|
|
from quapy.method.aggregative import KDEyML, ACC
|
|
from quapy.protocol import UPP
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from collections import defaultdict
|
|
from time import time
|
|
|
|
|
|
def methods(data_handler: DatasetHandler):
|
|
"""
|
|
Returns a tuple (name, quantifier, hyperparams, bayesian/bootstrap_constructor), where:
|
|
- name: is a str representing the name of the method (e.g., 'BayesianKDEy')
|
|
- quantifier: is the base model (e.g., KDEyML())
|
|
- hyperparams: is a dictionary for the quantifier (e.g., {'bandwidth': [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]})
|
|
- bayesian/bootstrap_constructor: is a function that instantiates the bayesian o bootstrap method with the
|
|
quantifier with optimized hyperparameters
|
|
"""
|
|
if isinstance(data_handler, VisualDataHandler):
|
|
Cls = LogisticRegression
|
|
cls_hyper = {}
|
|
else:
|
|
Cls = LogisticRegression
|
|
cls_hyper = {'classifier__C': np.logspace(-4, 4, 9), 'classifier__class_weight': ['balanced', None]}
|
|
kdey_hyper = {'bandwidth': np.logspace(-3, -1, 10), **cls_hyper}
|
|
kdey_hyper_larger = {'bandwidth': np.logspace(-1, 0, 10), **cls_hyper}
|
|
kdey_hyper_clr = {'bandwidth': np.logspace(-2, 2, 10), **cls_hyper}
|
|
|
|
# surrogate quantifiers
|
|
kde_gau_scale = KDEyScaledB(Cls())
|
|
|
|
yield 'KDEy-G-exp', kdey_hyper, KDEyML(Cls())
|
|
# yield 'KDEy-G-exp2', kdey_hyper_larger, KDEyML(Cls())
|
|
# yield 'KDEy-G-log', kdey_hyper, KDEyML(Cls(), logdensities=True)
|
|
yield 'KDEy-Ait', kdey_hyper_clr, KDEyCLR(Cls())
|
|
|
|
|
|
def model_selection(dataset: DatasetHandler, point_quantifier: AggregativeQuantifier, grid: dict):
|
|
with qp.util.temp_seed(0):
|
|
if isinstance(point_quantifier, KDEyScaledB) and 'bandwidth' in grid:
|
|
def scale_bandwidth(bandwidth, n_classes, beta=0.5):
|
|
return bandwidth * np.power(n_classes, beta)
|
|
|
|
n = dataset.get_training().n_classes
|
|
grid['bandwidth'] = [scale_bandwidth(b, n) for b in grid['bandwidth']]
|
|
print('bandwidth scaled')
|
|
print(f'performing model selection for {point_quantifier.__class__.__name__} with grid {grid}')
|
|
# model selection
|
|
if len(grid) > 0:
|
|
train, val_prot = dataset.get_train_valprot_for_modsel()
|
|
mod_sel = GridSearchQ(
|
|
model=point_quantifier,
|
|
param_grid=grid,
|
|
protocol=val_prot,
|
|
refit=False,
|
|
n_jobs=-1,
|
|
verbose=True
|
|
).fit(*train.Xy)
|
|
best_params = mod_sel.best_params_
|
|
else:
|
|
best_params = {}
|
|
|
|
return best_params
|
|
|
|
|
|
def experiment(dataset: DatasetHandler,
|
|
point_quantifier: AggregativeQuantifier,
|
|
method_name: str,
|
|
grid: dict,
|
|
hyper_choice_path: Path):
|
|
|
|
with qp.util.temp_seed(0):
|
|
# model selection
|
|
best_hyperparams = qp.util.pickled_resource(
|
|
hyper_choice_path, model_selection, dataset, cp(point_quantifier), grid
|
|
)
|
|
print(f'{best_hyperparams=}')
|
|
|
|
t_init = time()
|
|
training, test_generator = dataset.get_train_testprot_for_eval()
|
|
point_quantifier.fit(*training.Xy)
|
|
tr_time = time() - t_init
|
|
|
|
# test
|
|
train_prevalence = training.prevalence()
|
|
results = defaultdict(list)
|
|
pbar = tqdm(enumerate(test_generator()), total=test_generator.total())
|
|
for i, (sample_X, true_prevalence) in pbar:
|
|
t_init = time()
|
|
point_estimate = point_quantifier.predict(sample_X)
|
|
ttime = time() - t_init
|
|
|
|
results['true-prevs'].append(true_prevalence)
|
|
results['point-estim'].append(point_estimate)
|
|
results['shift'].append(qp.error.ae(true_prevalence, train_prevalence))
|
|
results['ae'].append(qp.error.ae(prevs_true=true_prevalence, prevs_hat=point_estimate))
|
|
results['rae'].append(qp.error.rae(prevs_true=true_prevalence, prevs_hat=point_estimate))
|
|
results['sre'].append(qp.error.sre(prevs_true=true_prevalence, prevs_hat=point_estimate, prevs_train=train_prevalence))
|
|
results['test-time'].append(ttime)
|
|
|
|
pbar.set_description(
|
|
f'{method_name} MAE={np.mean(results["ae"]):.5f} W={np.mean(results["sre"]):.5f}')
|
|
|
|
report = {
|
|
'optim_hyper': best_hyperparams,
|
|
'train_time': tr_time,
|
|
'train-prev': train_prevalence,
|
|
'results': {k: np.asarray(v) for k, v in results.items()},
|
|
}
|
|
|
|
return report
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
result_dir = Path('results_map')
|
|
|
|
reports = defaultdict(list)
|
|
|
|
for data_handler in [UCIMulticlassHandler]: # , UCIMulticlassHandler, LeQuaHandler, VisualDataHandler, CIFAR100Handler]:
|
|
for dataset in data_handler.iter():
|
|
qp.environ['SAMPLE_SIZE'] = dataset.sample_size
|
|
# print(f'dataset={dataset.name}')
|
|
|
|
problem_type = 'binary' if dataset.is_binary() else 'multiclass'
|
|
for method_name, hyper_params, quantifier in methods(dataset):
|
|
|
|
result_path = experiment_path(result_dir / problem_type, dataset.name, method_name)
|
|
hyper_path = experiment_path(result_dir / 'hyperparams' / problem_type, dataset.name, method_name)
|
|
|
|
# if os.path.exists(result_path):
|
|
report = qp.util.pickled_resource(
|
|
result_path, experiment, dataset, quantifier, method_name, hyper_params, hyper_path
|
|
)
|
|
reports['dataset'].append(dataset.name)
|
|
reports['method'].append(method_name)
|
|
reports['MAE'].append(report["results"]["ae"].mean())
|
|
reports['SRE'].append(report["results"]["sre"].mean())
|
|
reports['h'].append(report["optim_hyper"]["bandwidth"])
|
|
|
|
print(f'dataset={dataset.name}, '
|
|
f'method={method_name}: '
|
|
f'mae={reports["MAE"][-1]:.5f}, '
|
|
f'W={reports["SRE"][-1]:.5f} '
|
|
f'h={reports["h"][-1]}')
|
|
|
|
pv = pd.DataFrame(reports).pivot_table(values=['MAE', 'SRE', 'h'], index='dataset', columns='method', margins=True)
|
|
print(pv)
|
|
|
|
|
|
|