QuaPy/KDEy/experiments.py

154 lines
4.6 KiB
Python

import os
import pickle
import shutil
import numpy as np
from sklearn.linear_model import LogisticRegression
from os.path import join
import quapy as qp
from quapy.protocol import UPP
from kdey_devel import KDEyML
from utils import measuretime
DEBUG = True
qp.environ["SAMPLE_SIZE"] = 100 if DEBUG else 500
val_repeats = 100 if DEBUG else 500
test_repeats = 100 if DEBUG else 500
if DEBUG:
qp.environ["DEFAULT_CLS"] = LogisticRegression()
test_results = {}
val_choice = {}
bandwidth_range = np.linspace(0.01, 0.20, 20)
if DEBUG:
bandwidth_range = np.linspace(0.01, 0.20, 5)
def datasets():
dataset_list = qp.datasets.UCI_MULTICLASS_DATASETS
if DEBUG:
dataset_list = dataset_list[:4]
for dataset_name in dataset_list:
dataset = qp.datasets.fetch_UCIMulticlassDataset(dataset_name)
if DEBUG:
dataset = dataset.reduce(random_state=0)
yield dataset
@measuretime
def predict_b_modsel(dataset):
# bandwidth chosen during model selection in validation
train = dataset.training
train_tr, train_va = train.split_stratified(random_state=0)
kdey = KDEyML(random_state=0)
modsel = qp.model_selection.GridSearchQ(
model=kdey,
param_grid={'bandwidth': bandwidth_range},
protocol=UPP(train_va, repeats=val_repeats),
refit=False,
n_jobs=-1,
verbose=True
).fit(train_tr)
chosen_bandwidth = modsel.best_params_['bandwidth']
modsel_choice = float(chosen_bandwidth)
# kdey.set_params(bandwidth=chosen_bandwidth)
# kdey.fit(train)
# kdey.qua
return modsel_choice
def in_test_search(dataset, n_jobs=-1):
train, test = dataset.train_test
print(f"testing KDEy in {dataset.name}")
def experiment_job(bandwidth):
kdey = KDEyML(bandwidth=bandwidth, random_state=0)
kdey.fit(train)
test_gen = UPP(test, repeats=test_repeats)
mae = qp.evaluation.evaluate(kdey, protocol=test_gen, error_metric='mae', verbose=True)
print(f'{bandwidth=}: {mae:.5f}')
return float(mae)
dataset_results = qp.util.parallel(experiment_job, bandwidth_range, n_jobs=n_jobs)
return dataset_results, bandwidth_range
def plot_bandwidth(dataset_name, test_results, bandwidths, triplet_list_results):
import matplotlib.pyplot as plt
print("PLOT", dataset_name)
print(dataset_name)
plt.figure(figsize=(8, 6))
# show test results
plt.plot(bandwidths, test_results, marker='o')
for (method_name, method_choice, method_time) in triplet_list_results:
plt.axvline(x=method_choice, linestyle='--', label=method_name)
# Agregar etiquetas y título
plt.xlabel('Bandwidth')
plt.ylabel('MAE')
plt.title(dataset_name)
# Mostrar la leyenda
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
# Mostrar la gráfica
plt.grid(True)
plotdir = './plots'
if DEBUG:
plotdir = './plots_debug'
os.makedirs(plotdir, exist_ok=True)
plt.tight_layout()
plt.savefig(f'{plotdir}/{dataset_name}.png')
plt.close()
def error_table(dataset_name, test_results, bandwidth_range, triplet_list_results):
best_bandwidth = bandwidth_range[np.argmin(test_results)]
print(f'Method\tChoice\tAE\tTime')
for method_name, method_choice, took in triplet_list_results:
if method_choice in bandwidth_range:
index = np.where(bandwidth_range == method_choice)[0][0]
method_score = test_results[index]
else:
method_score = 1
error = np.abs(best_bandwidth-method_score)
print(f'{method_name}\t{method_choice}\t{error}\t{took:.3}s')
for dataset in datasets():
print('NAME', dataset.name)
print(len(dataset.training))
print(len(dataset.test))
result_path = f'./results/{dataset.name}/'
if DEBUG:
result_path = result_path.replace('results', 'results_debug')
if os.path.exists(result_path):
shutil.rmtree(result_path)
dataset_results, bandwidth_range = qp.util.pickled_resource(join(result_path, 'test.pkl'), in_test_search, dataset)
triplet_list_results = []
modsel_choice, modsel_time = qp.util.pickled_resource(join(result_path, 'modsel.pkl'), predict_b_modsel, dataset)
triplet_list_results.append(('modsel', modsel_choice, modsel_time,))
print(f'Dataset = {dataset.name}')
print(modsel_choice)
print(dataset_results)
plot_bandwidth(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
error_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
# time_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)