59 lines
1.1 KiB
Python
59 lines
1.1 KiB
Python
from sklearn.metrics import f1_score
|
|
|
|
SAMPLE_SIZE = None
|
|
|
|
|
|
def f1e(y_true, y_pred):
|
|
return 1. - f1_score(y_true, y_pred, average='macro')
|
|
|
|
|
|
def acce(y_true, y_pred):
|
|
acc = (y_true == y_pred).mean()
|
|
return 1. - acc
|
|
|
|
|
|
def mae(prevs, prevs_hat):
|
|
return ae(prevs, prevs_hat).mean()
|
|
|
|
|
|
def ae(p, p_hat):
|
|
assert p.shape == p_hat.shape, 'wrong shape'
|
|
return abs(p_hat-p).mean(axis=-1)
|
|
|
|
|
|
def __check_eps(eps):
|
|
if eps is None:
|
|
if SAMPLE_SIZE is None:
|
|
raise ValueError('eps was not defined, and qp.error.SAMPLE_SIZE was not set')
|
|
else:
|
|
eps = 1. / (2. * SAMPLE_SIZE)
|
|
return eps
|
|
|
|
|
|
def mrae(p, p_hat, eps=None):
|
|
return rae(p, p_hat, eps).mean()
|
|
|
|
|
|
def rae(p, p_hat, eps=None):
|
|
eps = __check_eps(eps)
|
|
p = smooth(p, eps)
|
|
p_hat = smooth(p_hat, eps)
|
|
return (abs(p-p_hat)/p).mean(axis=-1)
|
|
|
|
|
|
def smooth(p, eps):
|
|
n_classes = p.shape[-1]
|
|
return (p+eps)/(eps*n_classes + 1)
|
|
|
|
|
|
CLASSIFICATION_ERROR = {f1e, acce}
|
|
QUANTIFICATION_ERROR = {mae, mrae}
|
|
|
|
f1_error = f1e
|
|
acc_error = acce
|
|
mean_absolute_error = mae
|
|
absolute_error = ae
|
|
mean_relative_absolute_error = mrae
|
|
relative_absolute_error = rae
|
|
|