134 lines
4.8 KiB
Python
134 lines
4.8 KiB
Python
import pickle
|
|
|
|
import numpy as np
|
|
from sklearn.base import BaseEstimator, TransformerMixin
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.multioutput import MultiOutputRegressor
|
|
from sklearn.pipeline import Pipeline
|
|
from sklearn.svm import SVR
|
|
|
|
from LeQua2024._lequa2024 import fetch_lequa2024
|
|
from quapy.data import LabelledCollection
|
|
from quapy.protocol import AbstractProtocol
|
|
from quapy.method.base import BaseQuantifier
|
|
import quapy.functional as F
|
|
from tqdm import tqdm
|
|
from scripts.evaluate import normalized_match_distance, match_distance
|
|
|
|
|
|
def projection_simplex_sort(unnormalized_arr) -> np.ndarray:
|
|
"""Projects a point onto the probability simplex.
|
|
[This code is taken from the devel branch, that will correspond to the future QuaPy 0.1.9]
|
|
|
|
The code is adapted from Mathieu Blondel's BSD-licensed
|
|
`implementation <https://gist.github.com/mblondel/6f3b7aaad90606b98f71>`_
|
|
(see function `projection_simplex_sort` in their repo) which is accompanying the paper
|
|
|
|
Mathieu Blondel, Akinori Fujino, and Naonori Ueda.
|
|
Large-scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex,
|
|
ICPR 2014, `URL <http://www.mblondel.org/publications/mblondel-icpr2014.pdf>`_
|
|
|
|
:param `unnormalized_arr`: point in n-dimensional space, shape `(n,)`
|
|
:return: projection of `unnormalized_arr` onto the (n-1)-dimensional probability simplex, shape `(n,)`
|
|
"""
|
|
unnormalized_arr = np.asarray(unnormalized_arr)
|
|
n = len(unnormalized_arr)
|
|
u = np.sort(unnormalized_arr)[::-1]
|
|
cssv = np.cumsum(u) - 1.0
|
|
ind = np.arange(1, n + 1)
|
|
cond = u - cssv / ind > 0
|
|
rho = ind[cond][-1]
|
|
theta = cssv[cond][-1] / float(rho)
|
|
return np.maximum(unnormalized_arr - theta, 0)
|
|
|
|
|
|
class RegressionToSimplex(BaseEstimator):
|
|
"""
|
|
A very simple regressor of probability distributions.
|
|
Internally, this class works by invoking an SVR regressor multioutput
|
|
followed by a mapping onto the probability simplex.
|
|
|
|
:param C: regularziation parameter for SVR
|
|
"""
|
|
|
|
def __init__(self, C=1):
|
|
self.C = C
|
|
|
|
def fit(self, X, y):
|
|
"""
|
|
Learns the correction
|
|
|
|
:param X: array-like of shape `(n_instances, n_classes)` with uncorrected prevalence vectors
|
|
:param y: array-like of shape `(n_instances, n_classes)` with true prevalence vectors
|
|
:return: self
|
|
"""
|
|
self.reg = MultiOutputRegressor(SVR(C=self.C), n_jobs=-1)
|
|
self.reg.fit(X, y)
|
|
return self
|
|
|
|
def predict(self, X):
|
|
"""
|
|
Corrects the a vector of prevalence values
|
|
|
|
:param X: array-like of shape `(n_classes,)` with one vector of uncorrected prevalence values
|
|
:return: array-like of shape `(n_classes,)` with one vector of corrected prevalence values
|
|
"""
|
|
y_ = self.reg.predict(X)
|
|
y_ = np.asarray([projection_simplex_sort(y_i) for y_i in y_])
|
|
return y_
|
|
|
|
|
|
class KDEyRegressor(BaseQuantifier):
|
|
"""
|
|
This class implements a regressor-based correction on top of a quantifier.
|
|
The quantifier is taken to be KDEy-ML, which is considered to be already trained (this
|
|
method simply loads a pickled object).
|
|
The method then optimizes a regressor that corrects prevalence vectors using the
|
|
validation samples as training data.
|
|
The regressor is based on a multioutput SVR and relies on a post-processing to guarantee
|
|
that the output lies on the probability simplex (see also RegressionToSimplex)
|
|
"""
|
|
|
|
def __init__(self, kde_path, Cs=np.logspace(-3,3,7)):
|
|
self.kde_path = kde_path
|
|
self.Cs = Cs
|
|
|
|
def fit(self, val_data: AbstractProtocol):
|
|
print(f'loading kde from {self.kde_path}')
|
|
self.kdey = pickle.load(open(self.kde_path, 'rb'))
|
|
|
|
print('representing val data with kde')
|
|
pbar = tqdm(val_data(), total=val_data.total())
|
|
Xs, Ys = [], []
|
|
for sample, prev in pbar:
|
|
prev_hat = self.kdey.quantify(sample)
|
|
Xs.append(prev_hat)
|
|
Ys.append(prev)
|
|
|
|
Xs = np.asarray(Xs)
|
|
Ys = np.asarray(Ys)
|
|
|
|
def scorer(estimator, X, y):
|
|
y_hat = estimator.predict(X)
|
|
md = normalized_match_distance(y, y_hat)
|
|
return (-md)
|
|
|
|
grid = {'C': self.Cs}
|
|
optim = GridSearchCV(
|
|
RegressionToSimplex(), param_grid=grid, scoring=scorer, verbose=0, cv=10, n_jobs=64
|
|
).fit(Xs, Ys)
|
|
self.regressor = optim.best_estimator_
|
|
return self
|
|
|
|
def quantify(self, instances):
|
|
prev_hat = self.kdey.quantify(instances)
|
|
return self.regressor.predict([prev_hat])[0]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
train, gen_val, _ = fetch_lequa2024(task='T3', data_home='./data', merge_T3=True)
|
|
kdey_r = KDEyRegressor('./models/T3/KDEy-ML.pkl')
|
|
kdey_r.fit(gen_val)
|
|
pickle.dump(kdey_r, open('./models/T3/KDEyRegressor.pkl', 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
|
|
|