QuaPy/LeQua2024/baselines.py

116 lines
4.1 KiB
Python

import argparse
import pickle
import os
import sys
from os.path import join
import numpy as np
from sklearn.linear_model import LogisticRegression as LR
from scripts.constants import SAMPLE_SIZE
from scripts.evaluate import normalized_match_distance
from LeQua2024._lequa2024 import LEQUA2024_TASKS, fetch_lequa2024, LEQUA2024_ZENODO
from quapy.method.aggregative import *
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
import quapy.functional as F
# LeQua official baselines (under development!)
# =================================================================================
BINARY_TASKS = ['T1', 'T4']
def new_cls():
return LR(n_jobs=-1, max_iter=3000)
lr_params = {
'C': np.logspace(-4, 4, 9),
'class_weight': [None, 'balanced']
}
def wrap_params(cls_params:dict, prefix:str):
return {'__'.join([prefix, key]): val for key, val in cls_params.items()}
def baselines():
q_params = wrap_params(lr_params, 'classifier')
kde_params = {**q_params, 'bandwidth': np.linspace(0.01, 0.20, 20)}
dm_params = {**q_params, 'nbins': [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 64]}
yield CC(new_cls()), "CC", q_params
yield ACC(new_cls()), "ACC", q_params
yield PCC(new_cls()), "PCC", q_params
yield PACC(new_cls()), "PACC", q_params
yield SLD(new_cls()), "SLD", q_params
#yield KDEyML(new_cls()), "KDEy-ML", kde_params
#yield KDEyHD(new_cls()), "KDEy-HD", kde_params
# yield KDEyCS(new_cls()), "KDEy-CS", kde_params
#yield DMy(new_cls()), "DMy", dm_params
def main(args):
models_path = qp.util.create_if_not_exist(join('./models', args.task))
hyperparams_path = qp.util.create_if_not_exist(join('./hyperparams', args.task))
os.makedirs(models_path, exist_ok=True)
os.makedirs(hyperparams_path, exist_ok=True)
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE[args.task]
train, gen_val, gen_test = fetch_lequa2024(task=args.task, data_home=args.datadir, merge_T3=True)
# gen_test is None, since the true prevalence vectors for the test samples will be released
# only after the competition ends
print(f'number of classes: {len(train.classes_)}')
print(f'number of training documents: {len(train)}')
print(f'training prevalence: {F.strprev(train.prevalence())}')
print(f'training matrix shape: {train.instances.shape}')
for quantifier, q_name, param_grid in baselines():
model_path = os.path.join(models_path, q_name + '.pkl')
modelparams_path = os.path.join(hyperparams_path, q_name + '.pkl')
if os.path.exists(model_path):
print(f'a pickle for {q_name} exists already in {model_path}; skipping!')
continue
print(f'starting model fitting for {q_name}')
if param_grid is not None:
optimizer = qp.model_selection.GridSearchQ(
quantifier,
param_grid,
protocol=gen_val,
error=normalized_match_distance if args.task=='T3' else qp.error.mrae,
refit=False,
verbose=True,
n_jobs=-1
).fit(train)
print(f'{q_name} got MRAE={optimizer.best_score_:.5f} (hyper-params: {optimizer.best_params_})')
quantifier = optimizer.best_model()
else:
quantifier.fit(train)
print(f'saving model in {model_path}')
pickle.dump(quantifier, open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump(quantifier.get_params(), open(modelparams_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='LeQua2024 baselines')
parser.add_argument('task', metavar='TASK', type=str, choices=LEQUA2024_TASKS,
help=f'Code of the task; available ones are {LEQUA2024_TASKS}')
parser.add_argument('datadir', metavar='DATA-PATH', type=str,
help='Path of the directory containing LeQua 2024 data (default is ./data)',
default='./data')
args = parser.parse_args()
main(args)