206 lines
6.7 KiB
Python
206 lines
6.7 KiB
Python
import pickle
|
|
import os
|
|
from time import time
|
|
from collections import defaultdict
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
import quapy as qp
|
|
from KDEy.kdey_devel import KDEyMLauto, optim_minimize
|
|
from method._kdey import KDEBase
|
|
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
|
from quapy.model_selection import GridSearchQ
|
|
from quapy.protocol import UPP
|
|
from pathlib import Path
|
|
from quapy import functional as F
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
SEED = 1
|
|
|
|
|
|
def newLR():
|
|
return LogisticRegression(max_iter=1000)
|
|
|
|
|
|
def plot(xaxis, metrics_measurements, metrics_names, suffix):
|
|
fig, ax1 = plt.subplots(figsize=(8, 6))
|
|
|
|
def add_plot(ax, mean_error, std_error, name, color, marker):
|
|
ax.plot(xaxis, mean_error, label=name, marker=marker, color=color)
|
|
if std_error is not None:
|
|
ax.fill_between(xaxis, mean_error - std_error, mean_error + std_error, color=color, alpha=0.2)
|
|
|
|
colors = ['b', 'g', 'r', 'c', 'purple']
|
|
|
|
def get_mean_std(measurement):
|
|
measurement = np.asarray(measurement)
|
|
measurement_mean = np.mean(measurement, axis=0)
|
|
if measurement.ndim == 2:
|
|
measurement_std = np.std(measurement, axis=0)
|
|
else:
|
|
measurement_std = None
|
|
return measurement_mean, measurement_std
|
|
|
|
for i, (measurement, name) in enumerate(zip(metrics_measurements, metrics_names)):
|
|
color = colors[i%len(colors)]
|
|
add_plot(ax1, *get_mean_std(measurement), name, color=color, marker='o')
|
|
|
|
ax1.set_xscale('log')
|
|
|
|
# Configurar etiquetas para el primer eje Y
|
|
ax1.set_xlabel('Bandwidth')
|
|
ax1.set_ylabel('Normalized value')
|
|
ax1.grid(True)
|
|
ax1.legend(loc='upper left')
|
|
|
|
# Crear un segundo eje Y que comparte el eje X
|
|
# ax2 = ax1.twinx()
|
|
|
|
# Pintar likelihood_val en el segundo eje Y
|
|
# add_plot(ax2, *get_mean_std(likelihood_measurements), name='NLL', color='purple', marker='x')
|
|
|
|
# Configurar etiquetas para el segundo eje Y
|
|
# ax1.set_ylabel('neg log likelihood')
|
|
# ax1.legend(loc='upper right')
|
|
|
|
# Mostrar el gráfico
|
|
plt.title(dataset)
|
|
# plt.show()
|
|
os.makedirs('./plots/likelihood/', exist_ok=True)
|
|
|
|
plt.savefig(f'./plots/likelihood/{dataset}-fig{suffix}.png')
|
|
plt.close()
|
|
|
|
|
|
def generate_data(from_train=False):
|
|
data = qp.datasets.fetch_UCIMulticlassDataset(dataset)
|
|
n_classes = data.n_classes
|
|
print(f'{i=}')
|
|
print(f'{dataset=}')
|
|
print(f'{n_classes=}')
|
|
print(len(data.training))
|
|
print(len(data.test))
|
|
|
|
train, test = data.train_test
|
|
if from_train:
|
|
train, test = train.split_stratified(0.5)
|
|
train_prev = train.prevalence()
|
|
test_prev = test.prevalence()
|
|
|
|
print(f'train-prev = {F.strprev(train_prev)}')
|
|
print(f'test-prev = {F.strprev(test_prev)}')
|
|
|
|
repeats = 10
|
|
prot = UPP(test, sample_size=SAMPLE_SIZE, repeats=repeats)
|
|
kde = KDEyMLauto(newLR())
|
|
kde.fit(train)
|
|
AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = [], [], [], [], []
|
|
tr_posteriors, tr_y = kde.classif_predictions.Xy
|
|
for sample_no, (sample, prev) in tqdm(enumerate(prot()), total=repeats):
|
|
te_posteriors = kde.classifier.predict_proba(sample)
|
|
classes = train.classes_
|
|
|
|
xaxis = []
|
|
ae_error = []
|
|
rae_error = []
|
|
mse_error = []
|
|
kld_error = []
|
|
likelihood_value = []
|
|
|
|
# for bandwidth in np.linspace(0.01, 0.2, 50):
|
|
for bandwidth in np.logspace(-5, np.log10(0.2), 50):
|
|
mix_densities = kde.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
|
test_densities = [kde.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
|
|
|
def neg_loglikelihood_prev(prev):
|
|
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
|
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
|
return -np.sum(test_loglikelihood)
|
|
|
|
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
|
pred_prev, likelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
|
|
|
|
xaxis.append(bandwidth)
|
|
ae_error.append(qp.error.ae(prev, pred_prev))
|
|
rae_error.append(qp.error.rae(prev, pred_prev))
|
|
mse_error.append(qp.error.mse(prev, pred_prev))
|
|
kld_error.append(qp.error.kld(prev, pred_prev))
|
|
likelihood_value.append(likelihood)
|
|
|
|
AE_error.append(ae_error)
|
|
RAE_error.append(rae_error)
|
|
MSE_error.append(mse_error)
|
|
KLD_error.append(kld_error)
|
|
LIKE_value.append(likelihood_value)
|
|
|
|
return xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value
|
|
|
|
|
|
def normalize_metric(Error_matrix):
|
|
max_val, min_val = np.max(Error_matrix), np.min(Error_matrix)
|
|
return (np.asarray(Error_matrix) - min_val) / (max_val - min_val)
|
|
|
|
|
|
SAMPLE_SIZE=150
|
|
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE
|
|
|
|
show_ae = True
|
|
show_rae = True
|
|
show_mse = False
|
|
show_kld = True
|
|
normalize = True
|
|
|
|
epsilon = 1e-10
|
|
DATASETS = qp.datasets.UCI_MULTICLASS_DATASETS
|
|
for i, dataset in enumerate(tqdm(DATASETS, desc='processing datasets', total=len(DATASETS))):
|
|
|
|
|
|
xaxis, AE_error_te, RAE_error_te, MSE_error_te, KLD_error_te, LIKE_value_te = qp.util.pickled_resource(
|
|
f'./plots/likelihood/pickles/{dataset}.pkl', generate_data, False
|
|
)
|
|
|
|
xaxis, AE_error_tr, RAE_error_tr, MSE_error_tr, KLD_error_tr, LIKE_value_tr = qp.util.pickled_resource(
|
|
f'./plots/likelihood/pickles/{dataset}_tr.pkl', generate_data, True
|
|
)
|
|
|
|
|
|
# Test measurements
|
|
# ----------------------------------------------------------------------------------------------------
|
|
measurements = []
|
|
measurement_names = []
|
|
if show_ae:
|
|
measurements.append(AE_error_te)
|
|
measurement_names.append('AE')
|
|
if show_rae:
|
|
measurements.append(RAE_error_te)
|
|
measurement_names.append('RAE')
|
|
if show_kld:
|
|
measurements.append(KLD_error_te)
|
|
measurement_names.append('KLD')
|
|
if show_mse:
|
|
measurements.append(MSE_error_te)
|
|
measurement_names.append('MSE')
|
|
measurements.append(LIKE_value_te)
|
|
measurement_names.append('NLL')
|
|
|
|
if normalize:
|
|
measurements = [normalize_metric(m) for m in measurements]
|
|
|
|
# plot(xaxis, measurements, measurement_names, suffix='AVE')
|
|
|
|
# Train-Test measurements
|
|
# ----------------------------------------------------------------------------------------------------
|
|
measurements = []
|
|
measurement_names = []
|
|
measurements.append(normalize_metric(LIKE_value_te))
|
|
measurements.append(normalize_metric(LIKE_value_tr))
|
|
measurement_names.append('NLL(te)')
|
|
measurement_names.append('NLL(tr)')
|
|
plot(xaxis, measurements, measurement_names, suffix='AVEtr')
|
|
|
|
|
|
|
|
|