132 lines
4.8 KiB
Python
132 lines
4.8 KiB
Python
import pickle
|
|
from collections import defaultdict
|
|
|
|
from joblib import Parallel, delayed
|
|
from tqdm import tqdm
|
|
import pandas as pd
|
|
from glob import glob
|
|
from pathlib import Path
|
|
import quapy as qp
|
|
from method.confidence import ConfidenceIntervals
|
|
from quapy.method.confidence import ConfidenceEllipseSimplex, ConfidenceEllipseCLR, ConfidenceEllipseILR
|
|
|
|
pd.set_option('display.max_columns', None)
|
|
pd.set_option('display.width', 2000)
|
|
pd.set_option('display.max_rows', None)
|
|
pd.set_option("display.expand_frame_repr", False)
|
|
pd.set_option("display.precision", 4)
|
|
pd.set_option("display.float_format", "{:.4f}".format)
|
|
|
|
|
|
def compute_coverage_amplitude(region_constructor, **kwargs):
|
|
all_samples = results['samples']
|
|
all_true_prevs = results['true-prevs']
|
|
|
|
def process_one(samples, true_prevs):
|
|
region = region_constructor(samples, **kwargs)
|
|
if isinstance(region, ConfidenceIntervals):
|
|
winkler = region.mean_winkler_score(true_prevs)
|
|
else:
|
|
winkler = None
|
|
return region.coverage(true_prevs), region.montecarlo_proportion(), winkler
|
|
|
|
out = Parallel(n_jobs=3)(
|
|
delayed(process_one)(samples, true_prevs)
|
|
for samples, true_prevs in tqdm(
|
|
zip(all_samples, all_true_prevs),
|
|
total=len(all_samples),
|
|
desc='constructing ellipses'
|
|
)
|
|
)
|
|
|
|
# unzip results
|
|
coverage, amplitude, winkler = zip(*out)
|
|
return list(coverage), list(amplitude), list(winkler)
|
|
|
|
|
|
def update_pickle(report, pickle_path, updated_dict:dict):
|
|
for k,v in updated_dict.items():
|
|
report[k]=v
|
|
pickle.dump(report, open(pickle_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
|
|
def update_pickle_with_region(report, file, conf_name, conf_region_class, **kwargs):
|
|
if f'coverage-{conf_name}' not in report:
|
|
covs, amps, winkler = compute_coverage_amplitude(conf_region_class, **kwargs)
|
|
|
|
update_fields = {
|
|
f'coverage-{conf_name}': covs,
|
|
f'amplitude-{conf_name}': amps,
|
|
f'winkler-{conf_name}': winkler
|
|
}
|
|
|
|
update_pickle(report, file, update_fields)
|
|
|
|
|
|
for setup in ['multiclass', 'binary']:
|
|
path = f'./results/{setup}/*.pkl'
|
|
table = defaultdict(list)
|
|
for file in tqdm(glob(path), desc='processing results', total=len(glob(path))):
|
|
file = Path(file)
|
|
dataset, method = file.name.replace('.pkl', '').split('__')
|
|
report = pickle.load(open(file, 'rb'))
|
|
results = report['results']
|
|
n_samples = len(results['ae'])
|
|
table['method'].extend([method.replace('Bayesian','Ba').replace('Bootstrap', 'Bo')] * n_samples)
|
|
table['dataset'].extend([dataset] * n_samples)
|
|
table['ae'].extend(results['ae'])
|
|
# table['c-CI'].extend(results['coverage'])
|
|
# table['a-CI'].extend(results['amplitude'])
|
|
|
|
update_pickle_with_region(report, file, conf_name='CI', conf_region_class=ConfidenceIntervals, bonferroni_correction=True)
|
|
update_pickle_with_region(report, file, conf_name='CE', conf_region_class=ConfidenceEllipseSimplex)
|
|
update_pickle_with_region(report, file, conf_name='CLR', conf_region_class=ConfidenceEllipseCLR)
|
|
update_pickle_with_region(report, file, conf_name='ILR', conf_region_class=ConfidenceEllipseILR)
|
|
|
|
table['c-CI'].extend(report['coverage-CI'])
|
|
table['a-CI'].extend(report['amplitude-CI'])
|
|
table['w-CI'].extend(report['winkler-CI'])
|
|
|
|
table['c-CE'].extend(report['coverage-CE'])
|
|
table['a-CE'].extend(report['amplitude-CE'])
|
|
|
|
table['c-CLR'].extend(report['coverage-CLR'])
|
|
table['a-CLR'].extend(report['amplitude-CLR'])
|
|
|
|
table['c-ILR'].extend(report['coverage-ILR'])
|
|
table['a-ILR'].extend(report['amplitude-ILR'])
|
|
|
|
|
|
df = pd.DataFrame(table)
|
|
|
|
n_classes = {}
|
|
tr_size = {}
|
|
for dataset in df['dataset'].unique():
|
|
fetch_fn = {
|
|
'binary': qp.datasets.fetch_UCIBinaryDataset,
|
|
'multiclass': qp.datasets.fetch_UCIMulticlassDataset
|
|
}[setup]
|
|
data = fetch_fn(dataset)
|
|
n_classes[dataset] = data.n_classes
|
|
tr_size[dataset] = len(data.training)
|
|
|
|
# remove datasets with more than max_classes classes
|
|
max_classes = 30
|
|
for data_name, n in n_classes.items():
|
|
if n > max_classes:
|
|
df = df[df["dataset"] != data_name]
|
|
|
|
for region in ['CI', 'CE', 'CLR', 'ILR']:
|
|
if setup == 'binary' and region=='ILR':
|
|
continue
|
|
pv = pd.pivot_table(
|
|
df, index='dataset', columns='method', values=['ae', f'c-{region}', f'a-{region}'], margins=True
|
|
)
|
|
pv['n_classes'] = pv.index.map(n_classes).astype('Int64')
|
|
pv['tr_size'] = pv.index.map(tr_size).astype('Int64')
|
|
pv = pv.drop(columns=[col for col in pv.columns if col[-1] == "All"])
|
|
print(f'{setup=}')
|
|
print(pv)
|
|
print('-'*80)
|
|
|