169 lines
5.1 KiB
Python
169 lines
5.1 KiB
Python
import os
|
|
from os.path import join
|
|
import pandas as pd
|
|
|
|
from quapy.data.base import LabelledCollection
|
|
import sys
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../../')))
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../')))
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './')))
|
|
#from LeQua2024.scripts import constants
|
|
#from LeQua2024._lequa2024 import fetch_lequa2024
|
|
import quapy as qp
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
from pathlib import Path
|
|
import glob
|
|
|
|
|
|
os.chdir('/home/moreo/QuaPy/LeQua2024')
|
|
print(os.getcwd())
|
|
|
|
|
|
qp.environ['SAMPLE_SIZE']=250
|
|
|
|
TASK=1
|
|
|
|
true_prevs_path = f'./TruePrevalences/T{TASK}.test_prevalences/T{TASK}/public/test_prevalences.txt'
|
|
folder = F'./Results_CODALAB_2024/extracted/TASK_{TASK}'
|
|
|
|
def load_result_file(path):
|
|
df = pd.read_csv(path, index_col=0)
|
|
id = df.index.to_numpy()
|
|
prevs = df.values
|
|
return id, prevs
|
|
|
|
|
|
method_files = glob.glob(f"{folder}/*.csv")
|
|
|
|
|
|
method_names_nice={
|
|
'DistMatching-y': 'DM',
|
|
'TeamGMNet': 'UniOviedo(Team1)',
|
|
'tobiaslotz': 'Lamarr'
|
|
}
|
|
|
|
exclude_methods=[
|
|
'TeamCUFE',
|
|
'hustav',
|
|
'PCC',
|
|
'CC'
|
|
]
|
|
|
|
|
|
# desired_order=[
|
|
# 'Lamarr',
|
|
# 'SLD',
|
|
# 'DM',
|
|
# 'KDEy',
|
|
# 'UniOviedo(Team1)'
|
|
# ]
|
|
# desired_order=[
|
|
# 'PCC', 'Lamarr'
|
|
# ]
|
|
|
|
# load the true values (sentiment prevalence, domain prevalence)
|
|
true_id, true_prevs = load_result_file(true_prevs_path)
|
|
|
|
|
|
# define the loss for evaluation
|
|
error_name = 'RAE'
|
|
error_log = False
|
|
|
|
if error_name == 'RAE':
|
|
err_function_ = qp.error.rae
|
|
elif error_name == 'AE':
|
|
err_function_ = qp.error.ae
|
|
else:
|
|
raise ValueError()
|
|
|
|
if error_log:
|
|
error_name = f'log({error_name})'
|
|
err_function = lambda x,y: np.log(err_function_(x,y))
|
|
else:
|
|
err_function = err_function_
|
|
|
|
|
|
def load_vector_documents(path):
|
|
"""
|
|
Loads vectorized documents. In case the sample is unlabelled,
|
|
the labels returned are None
|
|
|
|
:param path: path to the data sample containing the raw documents
|
|
:return: a tuple with the documents (np.ndarray of shape `(n,256)`) and the labels (a np.ndarray of shape `(n,)` if
|
|
the sample is labelled, or None if the sample is unlabelled), with `n` the number of instances in the sample
|
|
(250 for T1 and T4, 1000 for T2, and 200 for T3)
|
|
"""
|
|
D = pd.read_csv(path).to_numpy(dtype=float)
|
|
labelled = D.shape[1] == 257
|
|
if labelled:
|
|
X, y = D[:,1:], D[:,0].astype(int).flatten()
|
|
else:
|
|
X, y = D, None
|
|
return X, y
|
|
|
|
#train_prevalence = fetch_lequa2024(task=f'T{TASK}', data_home='./data')
|
|
train = LabelledCollection.load(f'/home/moreo/QuaPy/LeQua2024/data/lequa2024/T{TASK}/public/training_data.txt', loader_func=load_vector_documents)
|
|
train_prev = train.prevalence()
|
|
#train_prev = np.tile(train_prev, (len(true_id),1))
|
|
|
|
from quapy.plot import error_by_drift
|
|
|
|
# load the participant and baseline results
|
|
method_names, estim_prevs = [], []
|
|
for method_file in method_files:
|
|
method_name = Path(method_file).name.replace('.csv', '')
|
|
if method_name in exclude_methods:
|
|
continue
|
|
id, method_prevs = load_result_file(join(folder, method_name+'.csv'))
|
|
assert (true_id == id).all(), f'unmatched files for {method_file}'
|
|
method_name = method_names_nice.get(method_name, method_name)
|
|
method_names.append(method_name)
|
|
estim_prevs.append(method_prevs)
|
|
|
|
true_prevs = [true_prevs]*len(method_names)
|
|
tr_prevs =[train.prevalence()]*len(method_names)
|
|
error_by_drift(method_names,
|
|
true_prevs,
|
|
estim_prevs,
|
|
tr_prevs,
|
|
error_name='mrae', show_std=True,
|
|
show_density=True, vlines=True, savepath=f'./util_scripts/t{TASK}_{error_name}_pcc.png')
|
|
sys.exit()
|
|
|
|
shift=qp.error.ae(train_prev, true_prevs)
|
|
|
|
n_bins = 5
|
|
bins = np.linspace(shift.min(), shift.max(), n_bins + 1)
|
|
|
|
# Crear un DataFrame para los datos
|
|
df = pd.DataFrame({'dom_A_prevs': shift})
|
|
for method, err in errors.items():
|
|
df[method] = err
|
|
|
|
# Asignar cada valor de dom_A_prevs a un bin
|
|
df['bin'] = pd.cut(df['dom_A_prevs'], bins=bins, labels=False, include_lowest=True)
|
|
|
|
# Convertir el DataFrame a formato largo
|
|
df_long = df.melt(id_vars=['dom_A_prevs', 'bin'], value_vars=errors.keys(), var_name='Método', value_name='Error')
|
|
|
|
# Crear etiquetas de los bins para el eje X
|
|
bin_labels = [f"[{bins[i]:.3f}-{bins[i + 1]:.3f}" + (']' if i == n_bins-1 else ')') for i in range(n_bins)]
|
|
df_long['bin_label'] = df_long['bin'].map(dict(enumerate(bin_labels)))
|
|
|
|
# Crear el gráfico de boxplot en Seaborn
|
|
plt.figure(figsize=(14, 8))
|
|
sns.boxplot(x='bin', y='Error', hue='Método', data=df_long, palette='Set2', showfliers=False)
|
|
|
|
# Configurar etiquetas del eje X con los rangos de los bins
|
|
plt.xticks(ticks=range(n_bins), labels=bin_labels, rotation=0)
|
|
plt.xlabel("Amount of PPS between the training prevalence and the test prevalences, in terms of AE ")
|
|
plt.ylabel(error_name)
|
|
#plt.title("Boxplots de Errores por Método dentro de Bins de dom_A_prevs")
|
|
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
|
plt.tight_layout()
|
|
plt.grid(True, which='both', linestyle='--', linewidth=0.5)
|
|
#plt.show()
|
|
plt.savefig(f'./util_scripts/t{TASK}_{error_name}_pcc.png')
|