204 lines
6.0 KiB
Python
204 lines
6.0 KiB
Python
from sklearn.base import BaseEstimator
|
|
|
|
import quapy as qp
|
|
import itertools
|
|
import json
|
|
import os
|
|
from collections import defaultdict
|
|
from glob import glob
|
|
from pathlib import Path
|
|
from time import time
|
|
import numpy as np
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix
|
|
|
|
from ClassifierAccuracy.util.tabular import Table
|
|
from quapy.protocol import OnLabelledCollectionProtocol, AbstractStochasticSeededProtocol
|
|
|
|
from quapy.data import LabelledCollection
|
|
|
|
|
|
def split(data: LabelledCollection):
|
|
train_val, test = data.split_stratified(train_prop=0.66, random_state=0)
|
|
train, val = train_val.split_stratified(train_prop=0.5, random_state=0)
|
|
return train, val, test
|
|
|
|
|
|
def fit_method(method, V):
|
|
tinit = time()
|
|
method.fit(V)
|
|
t_train = time() - tinit
|
|
return method, t_train
|
|
|
|
|
|
def predictionsCAP(method, test_prot, oracle=False):
|
|
tinit = time()
|
|
if not oracle:
|
|
estim_accs = [method.predict(Ui.X) for Ui in test_prot()]
|
|
else:
|
|
estim_accs = [method.predict(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()]
|
|
t_test_ave = (time() - tinit) / test_prot.total()
|
|
return estim_accs, t_test_ave
|
|
|
|
|
|
def predictionsCAPcont_table(method, test_prot, gen_acc_measure, oracle=False):
|
|
estim_accs_dict = {}
|
|
tinit = time()
|
|
if not oracle:
|
|
estim_tables = [method.predict_ct(Ui.X) for Ui in test_prot()]
|
|
else:
|
|
estim_tables = [method.predict_ct(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()]
|
|
for acc_name, acc_fn in gen_acc_measure():
|
|
estim_accs_dict[acc_name] = [acc_fn(cont_table) for cont_table in estim_tables]
|
|
t_test_ave = (time() - tinit) / test_prot.total()
|
|
return estim_accs_dict, t_test_ave
|
|
|
|
|
|
def any_missing(basedir, cls_name, dataset_name, method_name, acc_measures):
|
|
for acc_name in acc_measures():
|
|
if not os.path.exists(getpath(basedir, cls_name, acc_name, dataset_name, method_name)):
|
|
return True
|
|
return False
|
|
|
|
|
|
def true_acc(h:BaseEstimator, acc_fn: callable, U: LabelledCollection):
|
|
y_pred = h.predict(U.X)
|
|
y_true = U.y
|
|
conf_table = confusion_matrix(y_true, y_pred=y_pred, labels=U.classes_)
|
|
return acc_fn(conf_table)
|
|
|
|
|
|
def from_contingency_table(param1, param2):
|
|
if param2 is None and isinstance(param1, np.ndarray) and param1.ndim==2 and (param1.shape[0]==param1.shape[1]):
|
|
return True
|
|
elif isinstance(param1, np.ndarray) and isinstance(param2, np.ndarray) and param1.shape==param2.shape:
|
|
return False
|
|
else:
|
|
raise ValueError('parameters for evaluation function not understood')
|
|
|
|
|
|
def vanilla_acc_fn(param1, param2=None):
|
|
if from_contingency_table(param1, param2):
|
|
return _vanilla_acc_from_ct(param1)
|
|
else:
|
|
return accuracy_score(param1, param2)
|
|
|
|
|
|
def macrof1_fn(param1, param2=None):
|
|
if from_contingency_table(param1, param2):
|
|
return macro_f1_from_ct(param1)
|
|
else:
|
|
return f1_score(param1, param2, average='macro')
|
|
|
|
|
|
def _vanilla_acc_from_ct(cont_table):
|
|
return np.diag(cont_table).sum() / cont_table.sum()
|
|
|
|
|
|
def _f1_bin(tp, fp, fn):
|
|
if tp + fp + fn == 0:
|
|
return 1
|
|
else:
|
|
return (2 * tp) / (2 * tp + fp + fn)
|
|
|
|
|
|
def macro_f1_from_ct(cont_table):
|
|
n = cont_table.shape[0]
|
|
|
|
if n==2:
|
|
tp = cont_table[1,1]
|
|
fp = cont_table[0,1]
|
|
fn = cont_table[1,0]
|
|
return _f1_bin(tp, fp, fn)
|
|
|
|
f1_per_class = []
|
|
for i in range(n):
|
|
tp = cont_table[i,i]
|
|
fp = cont_table[:,i].sum() - tp
|
|
fn = cont_table[i,:].sum() - tp
|
|
f1_per_class.append(_f1_bin(tp, fp, fn))
|
|
|
|
return np.mean(f1_per_class)
|
|
|
|
|
|
def microf1(cont_table):
|
|
n = cont_table.shape[0]
|
|
|
|
if n == 2:
|
|
tp = cont_table[1, 1]
|
|
fp = cont_table[0, 1]
|
|
fn = cont_table[1, 0]
|
|
return _f1_bin(tp, fp, fn)
|
|
|
|
tp, fp, fn = 0, 0, 0
|
|
for i in range(n):
|
|
tp += cont_table[i, i]
|
|
fp += cont_table[:, i] - tp
|
|
fn += cont_table[i, :] - tp
|
|
return _f1_bin(tp, fp, fn)
|
|
|
|
|
|
def cap_errors(true_acc, estim_acc):
|
|
true_acc = np.asarray(true_acc)
|
|
estim_acc = np.asarray(estim_acc)
|
|
#return (true_acc - estim_acc)**2
|
|
return np.abs(true_acc - estim_acc)
|
|
|
|
|
|
def getpath(basedir, cls_name, acc_name, dataset_name, method_name):
|
|
return f"results/{basedir}/{cls_name}/{acc_name}/{dataset_name}/{method_name}.json"
|
|
|
|
|
|
def open_results(basedir, cls_name, acc_name, dataset_name='*', method_name='*'):
|
|
results = defaultdict(lambda : {'true_acc':[], 'estim_acc':[]})
|
|
if isinstance(method_name, str):
|
|
method_name = [method_name]
|
|
if isinstance(dataset_name, str):
|
|
dataset_name = [dataset_name]
|
|
for dataset_, method_ in itertools.product(dataset_name, method_name):
|
|
path = getpath(basedir, cls_name, acc_name, dataset_, method_)
|
|
for file in glob(path):
|
|
#print(file)
|
|
method = Path(file).name.replace('.json','')
|
|
result = json.load(open(file, 'r'))
|
|
results[method]['true_acc'].extend(result['true_acc'])
|
|
results[method]['estim_acc'].extend(result['estim_acc'])
|
|
return results
|
|
|
|
|
|
def save_json_file(path, data):
|
|
os.makedirs(Path(path).parent, exist_ok=True)
|
|
with open(path, 'w') as f:
|
|
json.dump(data, f)
|
|
|
|
|
|
def save_json_result(path, true_accs, estim_accs, t_train, t_test):
|
|
result = {
|
|
't_train': t_train,
|
|
't_test_ave': t_test,
|
|
'true_acc': true_accs,
|
|
'estim_acc': estim_accs
|
|
}
|
|
save_json_file(path, result)
|
|
|
|
|
|
def get_dataset_stats(path, test_prot, L, V):
|
|
test_prevs = [Ui.prevalence() for Ui in test_prot()]
|
|
shifts = [qp.error.ae(L.prevalence(), Ui_prev) for Ui_prev in test_prevs]
|
|
info = {
|
|
'n_classes': L.n_classes,
|
|
'n_train': len(L),
|
|
'n_val': len(V),
|
|
'train_prev': L.prevalence().tolist(),
|
|
'val_prev': V.prevalence().tolist(),
|
|
'test_prevs': [x.tolist() for x in test_prevs],
|
|
'shifts': [x.tolist() for x in shifts],
|
|
'sample_size': test_prot.sample_size,
|
|
'num_samples': test_prot.total()
|
|
}
|
|
save_json_file(path, info)
|
|
|
|
|
|
|
|
|