274 lines
7.7 KiB
Python
274 lines
7.7 KiB
Python
import os.path
|
|
import pickle
|
|
from pathlib import Path
|
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
from method.aggregative import PACC, EMQ, KDEyML
|
|
|
|
"""
|
|
Ideas:
|
|
Try kernel based on feature covariance matrix, with dot product and with another kernel
|
|
Try Cauchy-Schwarz kernel
|
|
|
|
"""
|
|
|
|
import sklearn.metrics
|
|
from sklearn.gaussian_process import GaussianProcessRegressor
|
|
import numpy as np
|
|
from sklearn.gaussian_process.kernels import RBF, GenericKernelMixin, Kernel
|
|
from sklearn.metrics.pairwise import pairwise_distances, pairwise_kernels
|
|
|
|
from data import LabelledCollection
|
|
from protocol import UPP
|
|
from quapy.method.base import BaseQuantifier, BinaryQuantifier
|
|
import quapy.functional as F
|
|
from result_table.src.table import Table
|
|
|
|
np.random.seed(0)
|
|
|
|
|
|
class FeatCovKernel(GenericKernelMixin, Kernel):
|
|
def __init__(self, dimensions):
|
|
self.dimensions = dimensions
|
|
|
|
def _f(self, sample1, sample2):
|
|
"""
|
|
kernel value between a pair of samples
|
|
"""
|
|
sample1 = sample1.reshape(-1, self.dimensions)
|
|
sample2 = sample2.reshape(-1, self.dimensions)
|
|
featCov1 = pairwise_distances(sample1.T, metric='correlation')
|
|
featCov2 = pairwise_distances(sample2.T, metric='correlation')
|
|
featDiffNorm = np.linalg.norm(featCov1-featCov2)
|
|
simil = np.exp(-featDiffNorm)
|
|
return simil
|
|
|
|
def __call__(self, X, Y=None, eval_gradient=False):
|
|
if Y is None:
|
|
Y = X
|
|
|
|
if eval_gradient:
|
|
raise NotImplementedError()
|
|
else:
|
|
return np.array([[self._f(x, y) for y in Y] for x in X])
|
|
|
|
def diag(self, X):
|
|
return np.array([self._f(x, x) for x in X])
|
|
|
|
def is_stationary(self):
|
|
return True
|
|
|
|
class AveL2Kernel(GenericKernelMixin, Kernel):
|
|
"""
|
|
A minimal (but valid) convolutional kernel for sequences of variable
|
|
lengths."""
|
|
|
|
def __init__(self, dimensions):
|
|
self.dimensions=dimensions
|
|
|
|
def _f(self, sample1, sample2):
|
|
"""
|
|
kernel value between a pair of sequences
|
|
"""
|
|
sample1 = sample1.reshape(-1, self.dimensions)
|
|
sample2 = sample2.reshape(-1, self.dimensions)
|
|
dist = pairwise_distances(sample1, sample2)
|
|
mean_dist = dist.mean()
|
|
closenest = np.exp(-mean_dist)
|
|
return closenest
|
|
|
|
def __call__(self, X, Y=None, eval_gradient=False):
|
|
if Y is None:
|
|
Y = X
|
|
|
|
if eval_gradient:
|
|
raise NotImplementedError()
|
|
else:
|
|
return np.array([[self._f(x, y) for y in Y] for x in X])
|
|
|
|
def diag(self, X):
|
|
return np.array([self._f(x, x) for x in X])
|
|
|
|
def is_stationary(self):
|
|
return True
|
|
|
|
|
|
class RJSDkernel(GenericKernelMixin, Kernel):
|
|
"""
|
|
A minimal (but valid) convolutional kernel for sequences of variable
|
|
lengths."""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def _f(self, sample1, sample2):
|
|
"""
|
|
kernel value between a pair of sequences
|
|
"""
|
|
div = RJSDk(sample1, sample2)
|
|
closenest = np.exp(-div)
|
|
print(f'{closenest:.4f}')
|
|
return closenest
|
|
|
|
def __call__(self, X, Y=None, eval_gradient=False):
|
|
if Y is None:
|
|
Y = X
|
|
|
|
if eval_gradient:
|
|
raise NotImplementedError()
|
|
else:
|
|
return np.array([[self._f(x, y) for y in Y] for x in X])
|
|
|
|
def diag(self, X):
|
|
return np.array([self._f(x, x) for x in X])
|
|
|
|
def is_stationary(self):
|
|
return True
|
|
|
|
|
|
def RJSDk(sample_1, sample_2):
|
|
sample_1 = sample_1.reshape(-1, 3)
|
|
sample_2 = sample_2.reshape(-1, 3)
|
|
n1 = sample_1.shape[0]
|
|
n2 = sample_2.shape[0]
|
|
pi1 = n1 / (n1 + n2)
|
|
pi2 = n2 / (n1 + n2)
|
|
Z = np.concatenate([sample_1, sample_2])
|
|
Kz = pairwise_kernels(Z, metric='rbf', n_jobs=-1)
|
|
# Kz = pairwise_kernels(Z, metric='cosine', n_jobs=-1)
|
|
Kx = Kz[:n1, :n1]
|
|
Ky = Kz[n1:, n1:]
|
|
|
|
SKz = S(Kz)
|
|
SKx = S(Kx)
|
|
SKy = S(Ky)
|
|
|
|
return SKz - (pi1 * SKx + pi2 * SKy)
|
|
|
|
def S(K):
|
|
K = K/np.trace(K)
|
|
M = K @ np.log(K)
|
|
s = -np.trace(M)
|
|
return s
|
|
# eigval, _ = np.linalg.eig(K)
|
|
# accum = 0
|
|
# for lamda_i in eigval:
|
|
# accum += (lamda_i * np.log(lamda_i))
|
|
# return -accum
|
|
|
|
|
|
def target_function(X):
|
|
X = X.reshape(-1,3)
|
|
return X[:,0]**3 + 2.1*X[:,1]**2 + X[:,0] + 0.1
|
|
|
|
|
|
# X = np.random.rand(14,3)
|
|
# X /= X.sum(axis=1, keepdims=True)
|
|
# Y = np.random.rand(10,3)
|
|
# Y /= Y.sum(axis=1, keepdims=True)
|
|
#
|
|
# X = X.flatten()
|
|
# Y = Y.flatten()
|
|
#
|
|
# d = RJSDk(X, Y)
|
|
#
|
|
# print(d)
|
|
#
|
|
# d = RJSDk(X, X)
|
|
#
|
|
# print(d)
|
|
#
|
|
# import sys ; sys.exit(0)
|
|
|
|
# X_train = [np.random.rand(10*3) for _ in range(50)]
|
|
# y_train = [target_function(X).mean() for X in X_train]
|
|
#
|
|
# X_test = [np.random.rand(10*3) for _ in range(20)]
|
|
# y_test = [target_function(X).mean() for X in X_test]
|
|
#
|
|
#
|
|
# print('fit')
|
|
# # kernel = 1 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e2))
|
|
# kernel = MinL2Kernel()
|
|
# # kernel = RJSDkernel()
|
|
# gaussian_process = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)
|
|
# gaussian_process.fit(X_train, y_train)
|
|
# print('[done]')
|
|
#
|
|
# print(gaussian_process.kernel_)
|
|
#
|
|
# y_pred = gaussian_process.predict(X_test)
|
|
#
|
|
# mse = np.mean((y_test - y_pred)**2)
|
|
#
|
|
# print(mse)
|
|
|
|
class GPQuantifier(BaseQuantifier):
|
|
|
|
def __init__(self, dimensions, kernel, num_tr_samples=20, size_tr_samples=50):
|
|
self.dimensions = dimensions
|
|
self.num_tr_samples = num_tr_samples
|
|
self.size_tr_samples = size_tr_samples
|
|
self.gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)
|
|
|
|
def fit(self, data: LabelledCollection):
|
|
sampler = UPP(data, sample_size=self.size_tr_samples, repeats=self.num_tr_samples)
|
|
Xs, ps = list(zip(*[(X,p) for X,p in sampler()]))
|
|
ps = [p[1] for p in ps]
|
|
Xs = [X.flatten() for X in Xs]
|
|
self.gp.fit(Xs, ps)
|
|
return self
|
|
|
|
def quantify(self, instances):
|
|
X = [instances.flatten()]
|
|
p = self.gp.predict(X)[0]
|
|
return F.as_binary_prevalence(p, clip_if_necessary=True)
|
|
|
|
import quapy as qp
|
|
|
|
from quapy.data.datasets import fetch_UCIBinaryDataset, UCI_BINARY_DATASETS
|
|
|
|
table = Table('avel2')
|
|
methodnames = ['AveL2','PACC', 'SLD', 'KDEyML']
|
|
|
|
for methodname in methodnames:
|
|
errors = []
|
|
for dataset_name in UCI_BINARY_DATASETS:
|
|
if dataset_name in ['balance.2']:
|
|
continue
|
|
|
|
result_path = f'./results_gp/{dataset_name}_{methodname}.pkl'
|
|
os.makedirs(Path(result_path).parent, exist_ok=True)
|
|
if os.path.exists(result_path):
|
|
aes = pickle.load(open(result_path, 'rb'))
|
|
else:
|
|
dataset = fetch_UCIBinaryDataset(dataset_name)
|
|
qp.data.preprocessing.standardize(dataset, inplace=True)
|
|
train, test = dataset.train_test
|
|
d = train.X.shape[1]
|
|
if methodname=='AveL2':
|
|
q = GPQuantifier(dimensions=d, kernel=AveL2Kernel(dimensions=d), num_tr_samples=150, size_tr_samples=100)
|
|
elif methodname=='PACC':
|
|
q = PACC(LogisticRegression())
|
|
elif methodname=='SLD':
|
|
q = EMQ(LogisticRegression())
|
|
elif methodname=='KDEyML':
|
|
q = KDEyML(LogisticRegression(), bandwidth=0.05)
|
|
else:
|
|
raise ValueError('unknown method' + methodname)
|
|
q.fit(train)
|
|
aes = qp.evaluation.evaluate(q, UPP(test, sample_size=100), error_metric='ae', verbose=False)
|
|
pickle.dump(aes, open(result_path, 'wb'), pickle.HIGHEST_PROTOCOL)
|
|
|
|
mae = np.mean(aes)
|
|
print(f'{dataset_name}\t{np.mean(mae):.4f}')
|
|
|
|
errors.append(mae)
|
|
table.add(dataset_name, methodname, aes)
|
|
|
|
print(f'\nmean={np.mean(errors):.5f}')
|
|
table.format.show_std=False
|
|
table.format.mean_prec=4
|
|
table.LatexPDF('./table_gp/gp.pdf', tables=[table], resizebox=False)
|