QuaPy/KDEy/experiments.py

125 lines
3.8 KiB
Python

import os
import pickle
import shutil
import numpy as np
from sklearn.linear_model import LogisticRegression
from os.path import join
import quapy as qp
from quapy.method.aggregative import KDEyML
from quapy.protocol import UPP
from kdey_devel import KDEyMLauto
from utils import *
from constants import *
import quapy.functional as F
qp.environ["SAMPLE_SIZE"] = 100 if DEBUG else 500
val_repeats = 100 if DEBUG else 500
test_repeats = 100 if DEBUG else 500
if DEBUG:
qp.environ["DEFAULT_CLS"] = LogisticRegression()
test_results = {}
val_choice = {}
bandwidth_range = np.linspace(0.01, 0.20, 20)
if DEBUG:
bandwidth_range = np.linspace(0.01, 0.20, 5)
def datasets():
dataset_list = qp.datasets.UCI_MULTICLASS_DATASETS[:4]
if DEBUG:
dataset_list = dataset_list[:4]
for dataset_name in dataset_list:
dataset = qp.datasets.fetch_UCIMulticlassDataset(dataset_name)
if DEBUG:
dataset = dataset.reduce(random_state=0)
yield dataset
@measuretime
def predict_b_modsel(dataset):
# bandwidth chosen during model selection in validation
train = dataset.training
train_tr, train_va = train.split_stratified(random_state=0)
kdey = KDEyML(random_state=0)
modsel = qp.model_selection.GridSearchQ(
model=kdey,
param_grid={'bandwidth': bandwidth_range},
protocol=UPP(train_va, repeats=val_repeats),
refit=False,
n_jobs=-1,
verbose=True
).fit(train_tr)
chosen_bandwidth = modsel.best_params_['bandwidth']
modsel_choice = float(chosen_bandwidth)
# kdey.set_params(bandwidth=chosen_bandwidth)
# kdey.fit(train)
# kdey.qua
return modsel_choice
@measuretime
def predict_b_kdeymlauto(dataset):
# bandwidth chosen during model selection in validation
train, test = dataset.train_test
kdey = KDEyMLauto(random_state=0)
print(f'true-prevalence: {F.strprev(test.prevalence())}')
chosen_bandwidth, _ = kdey.chose_bandwidth(train, test.X)
auto_bandwidth = float(chosen_bandwidth)
return auto_bandwidth
def in_test_search(dataset, n_jobs=-1):
train, test = dataset.train_test
print(f"generating true tests scores using KDEy in {dataset.name}")
def experiment_job(bandwidth):
kdey = KDEyML(bandwidth=bandwidth, random_state=0)
kdey.fit(train)
test_gen = UPP(test, repeats=test_repeats)
mae = qp.evaluation.evaluate(kdey, protocol=test_gen, error_metric='mae', verbose=True)
print(f'{bandwidth=}: {mae:.5f}')
return float(mae)
dataset_results = qp.util.parallel(experiment_job, bandwidth_range, n_jobs=n_jobs)
return dataset_results, bandwidth_range
for dataset in datasets():
print('NAME', dataset.name)
print(len(dataset.training))
print(len(dataset.test))
result_path = f'./results/{dataset.name}/'
if DEBUG:
result_path = result_path.replace('results', 'results_debug')
if os.path.exists(result_path):
shutil.rmtree(result_path)
dataset_results, bandwidth_range = qp.util.pickled_resource(join(result_path, 'test.pkl'), in_test_search, dataset)
triplet_list_results = []
modsel_choice, modsel_time = qp.util.pickled_resource(join(result_path, 'modsel.pkl'), predict_b_modsel, dataset)
triplet_list_results.append(('modsel', modsel_choice, modsel_time,))
auto_choice, auto_time = qp.util.pickled_resource(join(result_path, 'auto.pkl'), predict_b_kdeymlauto, dataset)
triplet_list_results.append(('auto', auto_choice, auto_time,))
print(f'Dataset = {dataset.name}')
print(modsel_choice)
print(dataset_results)
plot_bandwidth(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
error_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
# time_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)