QuaPy/KDEy/quantification_evaluation.py

170 lines
7.3 KiB
Python

import pickle
import os
from time import time
from collections import defaultdict
import numpy as np
from sklearn.linear_model import LogisticRegression
import quapy as qp
from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred
from quapy.method.aggregative import PACC, EMQ, KDEyML
from quapy.model_selection import GridSearchQ
from quapy.protocol import UPP
from pathlib import Path
SEED = 1
def newLR():
return LogisticRegression(max_iter=3000)
# typical hyperparameters explored for Logistic Regression
logreg_grid = {
'C': np.logspace(-4,4,9),
'class_weight': [None, 'balanced']
}
def wrap_hyper(classifier_hyper_grid: dict):
return {'classifier__' + k: v for k, v in classifier_hyper_grid.items()}
METHODS = [
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
('KDEy', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
# ('KDEy-MLred', KDEyMLred(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
('KDEy-scott', KDEyML(newLR(), bandwidth='scott'), wrap_hyper(logreg_grid)),
('KDEy-silver', KDEyML(newLR(), bandwidth='silverman'), wrap_hyper(logreg_grid)),
('KDEy-NLL', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-NLL+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood', search='optim'), wrap_hyper(logreg_grid)),
('KDEy-AE', KDEyMLauto2(newLR(), bandwidth='auto', target='mae', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-AE+', KDEyMLauto2(newLR(), bandwidth='auto', target='mae', search='optim'), wrap_hyper(logreg_grid)),
('KDEy-RAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-RAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae', search='optim'), wrap_hyper(logreg_grid)),
]
"""
TKDEyML era primero bandwidth (init 0.05) y luego prevalence (init uniform)
TKDEyML2 era primero prevalence (init uniform) y luego bandwidth (init 0.05)
TKDEyML3 era primero prevalence (init uniform) y luego bandwidth (init 0.1)
TKDEyML4 es como ML2 pero max 5 iteraciones por optimización
"""
TRANSDUCTIVE_METHODS = [
#('TKDEy-ML', KDEyMLauto(newLR()), None),
# ('TKDEy-MLboth', KDEyMLauto(newLR(), optim='both'), None),
# ('TKDEy-MLbothfine', KDEyMLauto(newLR(), optim='both_fine'), None),
# ('TKDEy-ML2', KDEyMLauto(newLR(), optim='two_steps'), None),
# ('TKDEy-MLike', KDEyMLauto(newLR(), optim='max_likelihood'), None),
# ('TKDEy-MLike2', KDEyMLauto(newLR(), optim='max_likelihood2'), None),
#('TKDEy-ML3', KDEyMLauto(newLR()), None),
#('TKDEy-ML4', KDEyMLauto(newLR()), None),
]
def show_results(result_path):
import pandas as pd
df = pd.read_csv(result_path + '.csv', sep='\t')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', 1000) # Ajustar el ancho máximo
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE"], margins=True)
print(pv)
pv = df.pivot_table(index='Dataset', columns="Method", values=["MRAE"], margins=True)
print(pv)
pv = df.pivot_table(index='Dataset', columns="Method", values=["KLD"], margins=True)
print(pv)
pv = df.pivot_table(index='Dataset', columns="Method", values=["TR-TIME"], margins=True)
print(pv)
pv = df.pivot_table(index='Dataset', columns="Method", values=["TE-TIME"], margins=True)
print(pv)
def run_experiment(method_name, quantifier, param_grid):
print('Init method', method_name)
with open(global_result_path + '.csv', 'at') as csv:
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
print('init', dataset)
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
if os.path.exists(local_result_path):
print(f'result file {local_result_path} already exist; skipping')
report = qp.util.load_report(local_result_path)
else:
with qp.util.temp_seed(SEED):
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
train, test = data.train_test
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
if method_name not in transductive_names:
if len(param_grid) == 0:
t_init = time()
quantifier.fit(train)
train_time = time() - t_init
else:
# model selection (train)
train, val = train.split_stratified(random_state=SEED)
protocol = UPP(val, repeats=n_bags_val)
modsel = GridSearchQ(
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
)
t_init = time()
try:
modsel.fit(train)
print(f'best params {modsel.best_params_}')
print(f'best score {modsel.best_score_}')
quantifier = modsel.best_model()
except:
print('something went wrong... trying to fit the default model')
quantifier.fit(train)
train_time = time() - t_init
else:
# transductive
t_init = time()
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
train_time = time() - t_init
# test
t_init = time()
protocol = UPP(test, repeats=n_bags_test)
report = qp.evaluation.evaluation_report(
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
)
test_time = time() - t_init
report['tr_time'] = train_time
report['te_time'] = test_time
report.to_csv(local_result_path)
means = report.mean(numeric_only=True)
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
csv.flush()
if __name__ == '__main__':
qp.environ['SAMPLE_SIZE'] = 500
qp.environ['N_JOBS'] = -1
n_bags_val = 100
n_bags_test = 500
result_dir = f'results_quantification/ucimulti'
os.makedirs(result_dir, exist_ok=True)
global_result_path = f'{result_dir}/allmethods'
with open(global_result_path + '.csv', 'wt') as csv:
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
run_experiment(method_name, quantifier, param_grid)
show_results(global_result_path)