QuaPy/Retrieval/plot_mrae_xaxis_size.py

89 lines
2.9 KiB
Python

import itertools
import os.path
from Retrieval.experiments import methods
from Retrieval.commons import CLASS_NAMES, Ks, DATA_SIZES
import matplotlib.pyplot as plt
from Retrieval.plot_mrae_xaxis_k import load_all_results
data_home = 'data'
class_mode = 'multiclass'
method_names = [name for name, *other in methods(None)]
all_results = {}
class_name_label = {
'continent': 'Geographic Location',
'gender': 'Gender',
'years_category': 'Age of Topic'
}
# loads all MRAE results, and returns a dictionary containing the values, which is indexed by:
# class_name -> data_size -> method_name -> k -> stat -> float
results = load_all_results()
# generates the class-independent, size-independent plots for y-axis=MRAE in which:
# - the x-axis displays the Ks
# X_DATA_SIZES = [int(x.replace('K', '000').replace('M', '000000').replace('FULL', '3250000')) for x in DATA_SIZES]
X_DATA_SIZES = [x.replace('FULL', '3.25M') for x in DATA_SIZES]
for class_name in CLASS_NAMES:
for k in [100]: #Ks:
log = class_name=='gender'
fig, ax = plt.subplots()
max_means = []
markers = itertools.cycle(['o', 's', '^', 'D', 'v', '*', '+'])
for method_name in method_names:
# class_name -> data_size -> method_name -> k -> stat -> float
means = [
results[class_name][data_size][method_name][k]['mean'] for data_size in DATA_SIZES
]
stds = [
results[class_name][data_size][method_name][k]['std'] for data_size in DATA_SIZES
]
# max_mean = np.max([
# results[class_name][data_size][method_name][k]['max'] for data_size in DATA_SIZE
# ])
max_means.append(max(means))
style = 'o-' if method_name != 'CC' else '--'
method_name = method_name.replace('NaiveQuery', 'Naive@$k$')
method_name = method_name.replace('KDEy-ML', 'KDEy')
marker=next(markers)
line = ax.plot(X_DATA_SIZES, means, style, label=method_name, color=None, linewidth=3, markersize=10, marker=marker)
color = line[-1].get_color()
if log:
ax.set_yscale('log')
# ax.fill_between(Ks, means - stds, means + stds, alpha=0.3, color=color)
ax.grid(True, which='both', axis='y', color='gray', linestyle='--', linewidth=0.3)
ax.set_xlabel('training pool size')
ax.set_ylabel('RAE' + (' (log scale)' if log else ''))
ax.set_title(f'{class_name_label[class_name]} at exposure {k=}')
ax.set_ylim([0, max(max_means)*1.05])
if class_name == 'years_category':
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
os.makedirs(f'plots/var_size/{class_name}', exist_ok=True)
plotpath = f'plots/var_size/{class_name}/{k}_mrae.pdf'
print(f'saving plot in {plotpath}')
plt.savefig(plotpath, bbox_inches='tight')